Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Innovation (Camb) ; 2(1): 100089, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557743

RESUMO

The controlled generation of reactive oxygen species (ROS) to selectively epoxidize styrene is a grand challenge. Herein, cyano-group-modified carbon nitrides (CNCY x and CN-T y ) are prepared, and the catalysts show better performance in regulating ROS and producing styrene oxide than the cyano-free sample. The in situ diffuse reflectance infrared and density functional theory calculation results reveal that the cyano group acts as the adsorption and activation site of oxygen. X-ray photoelectron spectroscopy and NMR spectrum results confirm that the cyano group bonds with the intact heptazine ring. This unique structure could inhibit H2O2 and ⋅OH formation, resulting in high selectivity of styrene oxide. Furthermore, high catalytic activity is still achieved when the system scales up to 2.7 L with 100 g styrene under solar light irradiation. The strategy of cyano group modification gives a new insight into regulating spatial configuration for tuning the utilization of oxygen-active species and shows potential applications in industry.

2.
Analyst ; 146(3): 979-988, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33554228

RESUMO

As one of the significant serum cytokines, platelet-derived growth factor-BB (PDGF-BB) is a crucial protein biomarker overexpressed in human life-threatening tumors, the sensitive identification and quantification of which are urgently desired but challenging. Herein we report a novel core-shell nanoarchitecture consisting of Cu-based metal-organic frameworks (Cu-MOFs) and covalent organic frameworks (denoted as TpBD-COFs), which was used to prepare an aptasensor for the detection of platelet-derived growth factor-BB (PDGF-BB). The central Cu-MOFs function as signal labels with no need for extra redox media, whereas the porous TpBD serves as the shell to immobilize the PDGF-BB-targeted aptamer strands in abundance via strong interactions involving π-π stacking, electrostatic, and hydrogen bonding interactions. The proposed aptasensor based on Cu-MOF@TpBD can achieve a detection limit as low as 0.034 pg mL-1 within the dynamic detection range from 0.0001 to 60 ng mL-1. The hybridization of MOFs and COFs, together with the immobilization with the specific analyte targeted aptamer, provides a promising and propagable approach to prepare an aptasensor for the simple, sensitive, and selective detection of a specific biomarker in clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Becaplermina , Humanos , Limite de Detecção , Proteínas Proto-Oncogênicas c-sis
3.
Phys Chem Chem Phys ; 22(3): 1655-1664, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894788

RESUMO

Layered double hydroxide-supported Au-Cu alloy nanoparticles (NPs) were found to be highly efficient catalysts for the oxidative esterification of benzyl alcohol with methanol in the presence of molecular oxygen under visible-light irradiation to prepare methyl benzoate. Here, we report that alloying small amounts of copper into gold nanoparticles can increase the ability to activate oxygen molecules to O2˙- radicals and display greater charge heterogeneity to promote the cleavage of the C-H bond of benzyl alcohol molecules by reinforcing the coordination of the intermediate with unsaturated metal active sites due to the LSPR effect of alloy NPs, which is the rate-limiting step of the reaction. Besides the Au-Cu alloy NPs, the support also played a pivotal role in the catalytic process. The support with the presence of acid-base pairs, in which the basic sites served as the reactant molecule adsorption sites to provoke the intermediate formation and the acidic sites promoted the recovery of the support surface, showed better performances by affecting the overall reaction rate completely. Moreover, applying this photocatalyst in the cross-esterification of aromatic alcohols and aliphatic alcohols displayed excellent yields.

4.
Chem Commun (Camb) ; 55(83): 12503-12506, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31576389

RESUMO

Polymeric carbon nitride is a promising candidate for metal-free photocatalysis, but it is hampered by low activity due to poor carrier separation efficiency and lack of active sites. We have constructed a bifunctionally-modified structure, containing cyano groups internally and carboxyl groups on the surface, that was about 205 times more active than unmodified carbon nitride. The internal cyano groups enhanced the photoelectric performance of carbon nitride, while the surface carboxyl groups acted as active sites to promote hydrogen production. It is anticipated that this work will inform the rational design of polymeric carbon nitride and inspire similar attempts to modify polymers.

5.
Sci Rep ; 9(1): 1280, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718720

RESUMO

A facile one-pot two-stage photochemical synthesis of aromatic azoxy compounds and imines has been developed by coupling the selective reduction of nitroaromatic compounds with the selective oxidation of amines in an aqueous solution. In the first stage (light illumination, Ar atmosphere), the light excited nitroaromatic molecule abstract H from amine to form ArNO2H and amine radical, which then form nitrosoaromatic, hydroxylamine and imine compounds. Water acts as a green solvent for the dispersion of the reactants and facilitates the formation of nitrosoaromatic and hydroxylamine intermediate compounds. In the second stage (no light, air atmosphere), the condensation of nitrosoaromatic and hydroxylamine compounds yields aromatic azoxy product with the aid of molecular oxygen in air. This photochemical synthesis achieved both high conversion and high product selectivity (>99%) at room temperature.

6.
Phys Chem Chem Phys ; 21(2): 868-875, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556817

RESUMO

The electron transfer process (ETP) of a photocatalyst plays a crucial role in clarifying its photoelectrochemical catalytic mechanism. BiOX (X = F, Cl, Br, I) (001) surfaces display excellent photocatalytic performance due to the high separation efficiency of photogenerated electron-hole (e--h+) pairs in their own efficient internal electric field (IEF). The oxygen vacancies (OVs) on the surfaces could cause a change in localized electronic states, then improve the photocatalytic activity of BiOX. Here, the ETP at BiOX (001) surfaces with and without surface OVs were calculated and investigated using a DMol3 module based on density functional theory (DFT). The results showed that the electron transfer at the BiOX (001) surfaces and interfaces should be like this: firstly, the [-O-Bi-] layer at the interface received the photon energy, which made the electrons on the O atoms preferentially photo-induced to Bi atoms and left photo-induced holes on the interface O atoms. Then, the effective electrons on the interface Bi atoms were diffused to one- or multi- electron reactions, and at the same time, electrons from the bulk were transferred through the path of O → Bi → X → X → Bi → O on BiOX (001) surfaces under the IEF effect to interface O atoms, and consequently, maintain the stable proceeding of the photocatalytic reaction. More importantly, we found that the X atoms indeed played a key role in connecting the non-bonding interlayers of the BiOX nanocrystals and affecting the ETP on BiOX (001) surfaces as electron transmitters. The exploration of the OV introduction on BiOX (001) surfaces suggested that the OV-induced localized electronic states should increase the electron mobility and the charge carrier density to improve the photocatalytic activity of BiOX, especially for BiOCl and BiOBr. Our findings could provide new insight for deeply understanding the transfer and catalytic behaviour of photo-induced electrons at BiOX (001) surfaces and interfaces.

7.
RSC Adv ; 9(25): 14391-14399, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35519351

RESUMO

Photocatalytic reduction of CO2 using solar energy to decrease CO2 emission is a promising clean renewable fuel production technology. Recently, Bi-based semiconductors with excellent photocatalytic activity and carbon-based carriers with large specific surface areas and strong CO2 adsorption capacity have attracted extensive attention. In this study, activated carbon spheres (ACSs) were obtained via carbonization and steam activation of phenolic resin-based carbon spheres at 850 °C synthesized by suspension polymerization. Then, the BiOBr/ACSs sample was successfully prepared via a simple impregnation method. The as-prepared samples were characterized by XRD, SEM, EDX, DRS, PL, EIS, XPS, BET, CO2 adsorption isotherm and CO2-TPD. The BiOBr and BiOBr/ACSs samples exhibited high CO selectivity for photocatalytic CO2 reduction, and BiOBr/ACSs achieved a rather higher photocatalytic activity (23.74 µmol g-1 h-1) than BiOBr (2.39 µmol g-1 h-1) under simulated sunlight irradiation. Moreover, the analysis of the obtained results indicates that in this photocatalyst system, due to their higher micropore surface area and larger micropore volume, ACSs provide enough physical adsorption sites for CO2 adsorption, and the intrinsic structure of ACSs can offer effective electron transfer ability for a fast and efficient separation of photo-induced electron-hole pairs. Finally, a possible enhanced photocatalytic mechanism of BiOBr/ACSs was investigated and proposed. Our findings should provide new and important research ideas for the construction of highly efficient photocatalyst systems for the reduction of CO2 to solar fuels and chemicals.

8.
Angew Chem Int Ed Engl ; 56(3): 816-820, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27966808

RESUMO

Efficient separation of photogenerated electrons and holes, and associated surface reactions, is a crucial aspect of efficient semiconductor photocatalytic systems employed for photocatalytic hydrogen production. A new CoOx /TiO2 /Pt photocatalyst produced by template-assisted atomic layer deposition is reported for photocatalytic hydrogen production on Pt and CoOx dual cocatalysts. Pt nanoclusters acting as electron collectors and active sites for the reduction reaction are deposited on the inner surface of porous TiO2 nanotubes, while CoOx nanoclusters acting as hole collectors and active sites for oxidation reaction are deposited on the outer surface of porous TiO2 nanotubes. A CoOx /TiO2 /Pt photocatalyst, comprising ultra-low concentrations of noble Pt (0.046 wt %) and CoOx (0.019 wt %) deposited simultaneously with one atomic layer deposition cycle, achieves remarkably high photocatalytic efficiency (275.9 µmol h-1 ), which is nearly five times as high as that of pristine TiO2 nanotubes (56.5 µmol h-1 ). The highly dispersed Pt and CoOx nanoclusters, porous structure of TiO2 nanotubes with large specific surface area, and the synergetic effect of the spatially separated Pt and CoOx dual cocatalysts contribute to the excellent photocatalytic activity.

9.
ACS Appl Mater Interfaces ; 8(29): 18815-21, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27383450

RESUMO

To achieve uniform carbon coating on TiO2 nanomaterials, high temperature (>500 °C) annealing treatment is a necessity. However, the annealing treatment inevitably leads to the strong phase transformation from TiO2(B) with high lithium ion storage (LIS) capacity to anatase with low LIS one as well as the damage of nanostructures. Herein, we demonstrate a new approach to create TiO2(B)/carbon core/shell nanotubes (C@TBNTs) using a long-chain silane polymethylhydrosiloxane (PMHS) to bind the TBNTs by forming Si-O-Ti bonds. The key feature of this work is that the introduction of PMHS onto TBNTs can afford TBNTs with very high thermal stability at higher than 700 °C and inhibit the phase transformation from TiO2(B) to anatase. Such a high thermal property of PMHS-TBNTs makes them easily coated with highly graphitic carbon shell via CVD process at 700 °C. The as-prepared C@TBNTs deliver outstanding rate capability and electrochemical stability, i.e., reversible capacity above 250 mAh g(-1) at 10 C and a high specific capacity of 479.2 mAh g(-1) after 1000 cycles at 1 C. As far as we know, the LIS performance of our sample is the highest among the previously reported TiO2(B) anode materials.

10.
ACS Appl Mater Interfaces ; 8(25): 16503-10, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281583

RESUMO

Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

11.
Angew Chem Int Ed Engl ; 53(11): 2935-40, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24604813

RESUMO

Supported nanoparticles (NPs) of nonplasmonic transition metals (Pd, Pt, Rh, and Ir) are widely used as thermally activated catalysts for the synthesis of important organic compounds, but little is known about their photocatalytic capabilities. We discovered that irradiation with light can significantly enhance the intrinsic catalytic performance of these metal NPs at ambient temperatures for several types of reactions. These metal NPs strongly absorb the light mainly through interband electronic transitions. The excited electrons interact with the reactant molecules on the particles to accelerate these reactions. The rate of the catalyzed reaction depends on the concentration and energy of the excited electrons, which can be increased by increasing the light intensity or by reducing the irradiation wavelength. The metal NPs can also effectively couple thermal and light energy sources to more efficiently drive chemical transformations.

12.
J Nanosci Nanotechnol ; 14(9): 6885-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924345

RESUMO

This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 degrees C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation.

13.
Nanoscale ; 5(22): 11011-8, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24068160

RESUMO

Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The (129)I(-) anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I(-)) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I(-) anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.


Assuntos
Iodo/química , Nanofibras/química , Nanotubos/química , Óxidos/química , Compostos de Prata/química , Titânio/química , Adsorção , Ânions/química , Iodo/isolamento & purificação , Radioisótopos do Iodo/química , Nanofibras/ultraestrutura , Nanotubos/ultraestrutura , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
14.
Chemistry ; 19(18): 5731-41, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23463719

RESUMO

Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400-700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.

15.
Chem Commun (Camb) ; 49(26): 2676-8, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23435475

RESUMO

The direct hydroamination of alkynes driven by visible light can be achieved in high yield and selectivity at ambient temperature using supported gold nanoparticles (AuNPs) as photocatalysts. Aniline molecules interact with visible light activated AuNPs meanwhile alkynes could be activated at active sites on the support. The findings reveal a new green approach for synthesis of fine organic compounds and provide insight into catalyst design for the activation of C≡C triple bonds and amines.


Assuntos
Alcinos/química , Aminas/síntese química , Ouro/química , Luz , Nanopartículas Metálicas/química , Temperatura , Aminação , Aminas/química , Catálise , Estrutura Molecular , Processos Fotoquímicos
16.
Nanoscale ; 5(6): 2232-42, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23412572

RESUMO

This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.


Assuntos
Nanofibras/química , Nanotubos/química , Silicatos/química , Titânio/química , Poluentes Radioativos da Água/química , Purificação da Água/métodos , Purificação da Água/instrumentação
17.
Chemistry ; 19(16): 5113-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23417892

RESUMO

Cerium ions (Ce(3+)) can be selectively doped into the TiO2(B) core of TiO2(B)/anatase core-shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce(3+) ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce(3+) ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce(3+)/Ce(4+) couple (E°(Ce(3+)/Ce(4+))=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce(3+)-doped nanofibers are irradiated by UV light, the doped Ce(3+) ions--in close vicinity to the interface between the TiO2(B) core and anatase nanoshell--can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co(2+/3+) and Cu(+/2+) ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn(2+), Ca(2+), or Mg(2+), does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.

18.
J Hazard Mater ; 246-247: 199-205, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23313892

RESUMO

Emergency treatment of radioactive material leakage and safety disposal of nuclear waste is a constant concern all along with the development of radioactive materials applications. To provide a solution, titanate with large surface area (143 m(2)g(-1)) and a lamina morphology (the thickness of the lamina is in range of tens of nanometers) was prepared from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag(2)O nanocrystals (5-30 nm) were deposited onto the titanate lamina. The surface of the titanate lamina has crystallographic similarity to that of Ag(2)O nanocrystals. Hence, the deposited Ag(2)O nanocrystals and titanate substrate join together at these surfaces, forming a well-matched phase coherent interface between them. Such coherence between the two phases reduces the overall energy by minimizing surface energy and anchors the Ag(2)O nanocrystals firmly on the external surface of the titanate structure. The composite thus obtained was applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I(-) anions). The composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were monitored by various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to assess its iodine removal abilities. The adsorbent exhibited a capacity as high as 3.4 mmol of iodine per gram of adsorbent in 1h. Therefore, Ag(2)O deposited titanate lamina is an effective adsorbent for removing radioactive iodine from water.


Assuntos
Iodo/isolamento & purificação , Nanoestruturas/química , Óxidos/química , Compostos de Prata/química , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Radioisótopos do Iodo/isolamento & purificação
20.
ACS Nano ; 4(10): 6219-27, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20822147

RESUMO

Numerous materials are polycrystalline or consist with crystals of different phases. However, materials consisting of crystals on the nanometer scale (nanocrystals) are not simply aggregates of randomly oriented crystals as is generally regarded. We found, that in four different materials that consist of nanocrystals of two different phases and were obtained by different approaches, the nanocrystals of different phases are combined coherently forming interfaces with a close crystallographic registry between adjacent crystals (coherent interfaces). The four materials were fabricated by (i) depositing Ag(2)O nanoparticles on titanate nanofibers, (ii) phase transition from TiO(2)(B) nanofibers to the nanofibers of mixed TiO(2)(B) and anatase phases, (iii) dehydration of the single crystal fibril titanate core coated with anatase nanocrystals, and (iv) attaching zeolite Y nanocrystals on the surface of titanate nanofibers. The finding suggests that preferred orientations and coherent interfaces generally exist in nanocrystal systems, and according to our results, they are largely unaffected by the fabrication process that was used. This is because the preferred orientations require that the engaged crystal planes from two connected crystals have the same basal spacing and that the crystals can interlock tightly at the atomic level to form thermodynamically stable interfaces. Hence it is rational that the preferred orientations and coherent interfaces dominant the nanostructures formed between the different nanocrystals and play a key role in assembling the composite nanostructures. The orientation and interfaces between crystals of different phases in mixed-phase materials are extremely difficult to determine. Nonetheless, the thermodynamic stability of the coherent interfaces allows us to apply phase-transformation invariant line strain theory to predict the preferred orientation (and thus the structure of the coherent interfaces). The theoretical predications agree remarkably with the transmission electron microscopy (TEM) analysis. This implies that we may acquire knowledge of the orientation and the interface structures in the mixed-phase materials without TEM measurement, and the knowledge is essential for comprehensively understanding properties of the many materials and processes that depend on the interfaces.


Assuntos
Nanocompostos/química , Nanopartículas/química , Nanotecnologia/métodos , Algoritmos , Cristalização , Teste de Materiais , Microscopia Eletrônica de Transmissão/métodos , Modelos Estatísticos , Conformação Molecular , Óxidos/química , Compostos de Prata/química , Termodinâmica , Titânio/química , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...