Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(13): e2207519, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36866927

RESUMO

Transition-metal-based layered double hydroxides (TM-LDHs) nanosheets are promising electrocatalysts in the renewable electrochemical energy conversion system, which are regarded as alternatives to noble metal-based materials. In this review, recent advances on effective and facile strategies to rationally design TM-LDHs nanosheets as electrocatalysts, such as increasing the number of active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, and controlling the lattice facets, are summarized and compared. Then, the utilization of these fabricated TM-LDHs nanosheets for oxygen evolution reaction, hydrogen evolution reaction, urea oxidation reaction, nitrogen reduction reaction, small molecule oxidations, and biomass derivatives upgrading is articulated through systematically discussing the corresponding fundamental design principles and reaction mechanism. Finally, the existing challenges in increasing the density of catalytically active sites and future prospects of TM-LDHs nanosheets-based electrocatalysts in each application are also commented.

2.
J Hazard Mater ; 434: 128905, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452983

RESUMO

The efficient removal of pharmaceutical pollutants presents a great challenge for the conventional sewage treatment system. Herein, we document the nanosheets assembled 3D hierarchical Fe3O4 hollow microspheres co-modified by Ag and g-C3N4 quantum dots (Ag/CNQDs@Fe3O4) for efficient degradation of two classic anticancer drugs, i.e., capecitabine (CAP) and 5-fluorouracil (5-FLU) under visible light in 1 h. Benefiting from the unique hierarchically hollow structure, the intrinsic strengths of each component and their interactions, synergistic reinforcing mechanism is constructed, furnishing more accessible reactive places, promoting the diffusion of pollutants/oxidants, improving charge separation ability, and raising light utilization rate. Consequently, Ag/CNQDs@Fe3O4 can not only show superior photocatalytic properties, but also greatly boost PMS activation to yield sufficient oxidative radicals. More notably, the studied system also features excellent stability and strong tolerance to real water samples, and maintains appreciable performance even under natural sunlight illumination. The predominant active species, possible ADs decomposition pathways, and underlying reaction mechanism for the Ag/CNQDs@Fe3O4/PMS/vis system are thoroughly explored. This work presents significant advancement in enabling an integrated technology of PMS and photocatalysis to realize its great potential in environment restoration.


Assuntos
Poluentes Ambientais , Pontos Quânticos , Catálise , Óxido Ferroso-Férrico/química , Grafite , Luz , Microesferas , Compostos de Nitrogênio , Preparações Farmacêuticas , Luz Solar , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA