Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569937

RESUMO

An important direction in the development of additive technologies is associated with the addition of ceramic particles (oxide, carbide, boride, and nitride ceramics) to metal powders. The prediction of the physical and mechanical characteristics of SiC-particle-reinforced composite materials (PRCMs) in comparison with experimental results was studied. A near-α Ti-4.25Al-2V titanium-alloy-based composite reinforced by 1 vol.% of SiC ceramic particles was produced using laser direct energy deposition. A multiscale modeling approach at the micro and macro levels was applied. At the micro level, the toughness and strength characteristics for a temperature interval of T = 20-450 °C were predicted using a representative volume element of PRCM with the nearly real shape of SiC particles. At the macro level, the features of plastic deformation and fracture of the PRCM were predicted by numerical modeling using the commercial software Digimat Student Edition ver. 2022.4 and Ansys Student 2023 R2. The addition of SiC particles was found to improve the physical and mechanical properties in the whole temperature range. The results of the numerical modeling were consistent with the experimental data (the deviation did not exceed 10%). The proposed approach for predicting the physical and mechanical properties of Ti-4.25Al-2V/SiC can also be used for other PRCMs obtained by laser direct energy deposition.

2.
Materials (Basel) ; 16(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570069

RESUMO

Laser shock peening (LSP) is an innovative technique that is used to enhance the fatigue strength of structural materials via the generation of significant residual stress. The present work was undertaken to evaluate the degree of plastic strain introduced during LSP and thus improve the fundamental understanding of the LSP process. To this end, electron backscatter diffraction (EBSD) and nano-hardness measurements were performed to examine the microstructural response of laser-shock-peened Ti-6Al-4V alloy. Only minor changes in both the shape of α grains/particles and hardness were found. Accordingly, it was concluded that the laser-shock-peened material only experienced a small plastic strain. This surprising result was attributed to a relatively high rate of strain hardening of Ti-6Al-4V during LSP.

3.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110032

RESUMO

Specimens of a medium-entropy Fe65(CoNi)25Cr9.5C0.5 (in at.%) alloy were produced using additive manufacturing (selective laser melting, SLM). The selected parameters of SLM resulted in a very high density in the specimens with a residual porosity of less than 0.5%. The structure and mechanical behavior of the alloy were studied under tension at room and cryogenic temperatures. The microstructure of the alloy produced by SLM comprised an elongated substructure, inside which cells with a size of ~300 nm were observed. The as-produced alloy demonstrated high yield strength and ultimate tensile strength (YS = 680 MPa; UTS = 1800 MPa) along with good ductility (tensile elongation = 26%) at a cryogenic temperature (77 K) that was associated with the development of transformation-induced plasticity (TRIP) effect. At room temperature, the TRIP effect was less pronounced. Consequently, the alloy demonstrated lower strain hardening and a YS/UTS of 560/640 MPa. The deformation mechanisms of the alloy are discussed.

4.
Materials (Basel) ; 16(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837336

RESUMO

The paper aimed to study the evolution of the microstructure and texture gradient of a 321-type metastable austenitic stainless steel during cold rotary swaging. Cold rotary swaging was carried out with a reduction of up to 90% at ambient temperature. Pronounced gradients of the α'-martensite volume fraction, the axial texture of austenite (⟨111⟩ and ⟨001⟩) and α'-martensite (⟨101⟩), and non-uniform microhardness distribution along the rod diameter were obtained after a reduction of 80-90%. According to the finite element analysis, moderate tensile stresses were attained in the center, whereas high compressive stresses operated at the edge. Due to water cooling of the rod surface and heating of the rod center during processing, a temperature gradient was also derived. Features of strain-induced martensitic transformation, microstructure and texture evolution, and non-uniform hardening during cold rotary swaging were discussed.

5.
Materials (Basel) ; 14(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885366

RESUMO

The aim of this work was to provide a guidance to the prediction and design of high-entropy alloys with good performance. New promising compositions of refractory high-entropy alloys with the desired phase composition and mechanical properties (yield strength) have been predicted using a combination of machine learning, phenomenological rules and CALPHAD modeling. The yield strength prediction in a wide range of temperatures (20-800 °C) was made using a surrogate model based on a support-vector machine algorithm. The yield strength at 20 °C and 600 °C was predicted quite precisely (the average prediction error was 11% and 13.5%, respectively) with a decrease in the precision to slightly higher than 20% at 800 °C. An Al13Cr12Nb20Ti20V35 alloy with an excellent combination of ductility and yield strength at 20 °C (16.6% and 1295 MPa, respectively) and at 800 °C (more 50% and 898 MPa, respectively) was produced based on the prediction.

6.
Sci Rep ; 10(1): 13293, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764575

RESUMO

Ti-rich body-centered cubic (BCC, ß) high-entropy alloys having compositions Ti35Zr27.5Hf27.5Nb5Ta5, Ti38Zr25Hf25Ta10Sn2, and Ti38Zr25Hf25Ta7Sn5 (in at%) were designed using bond order (Bo)-mean d-orbital energy level (Md) approach. Deformation mechanisms of these alloys were studied using tensile deformation. The alloys showed exceptionally high strain-hardening and ductility. For instance, the alloys showed at least twofold increment of tensile strength compared to the yield strength, due to strain-hardening. Post-deformation microstructural observations confirmed the transformation of ß to hexagonal close packed (HCP, α') martensite. Based on microstructural investigation, stress-strain behaviors were explained using transformation induced plasticity effect. Crystallographic analysis indicated transformation of ß to α' showed strong variant selection (1 1 0)ß//(0 0 0 1)α', and [1 - 1 1]ß//[1 1 - 2 0]α'.

7.
Materials (Basel) ; 11(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513603

RESUMO

The microstructure and microhardness evolution of a Ti-15(wt.%)Mo/TiB metal-matrix composite (MMC) during high-pressure torsion (HPT) at 400 °C was studied. The composite was fabricated by spark plasma sintering of a Ti, Mo and TiB2 powders mixture at 1200 °C. In the initial condition, the structure of the composite consisted mainly of body-centered cubic (bcc) Ti solid solution and TiB whiskers. An increase in dislocation density, a considerable decrease in a grain size in the bcc Ti matrix, and breaking/rearrangement of the TiB whiskers were observed during HPT. The (sub)grain size in the bcc Ti matrix attained after 1 revolution was ~75 nm and then gradually decreased to ~55 nm after 5 revolutions. The TiB particle sizes after 5 revolutions was found to be 130⁻210 nm. The microhardness increased with strain from 575 HV in the initial state to 730 HV after 5 revolutions. Various hardening mechanisms' contributions in the Ti-15Mo/TiB were evaluated.

8.
Materials (Basel) ; 11(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545095

RESUMO

Oxidation behavior of a refractory AlNbTiVZr0.25 high-entropy alloy at 600⁻900 °C was investigated. At 600⁻700 °C, two-stage oxidation kinetics was found: Nearly parabolic oxidation (n = 0.46⁻0.48) at the first stage, transitioned to breakaway oxidation (n = 0.75⁻0.72) at the second stage. At 800 °C, the oxidation kinetics was nearly linear (n = 0.92) throughout the entire duration of testing. At 900 °C, the specimen disintegrated after 50 h of testing. The specific mass gains were estimated to be 7.2, 38.1, and 107.5, and 225.5 mg/cm² at 600, 700, and 800 °C for 100 h, and 900 °C for 50 h, respectively. Phase compositions and morphology of the oxide scales were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was shown that the surface layer at 600 °C consisted of the V2O5, VO2, TiO2, Nb2O5, and TiNb2O7 oxides. Meanwhile, the scale at 900 °C comprised of complex TiNb2O7, AlNbO4, and Nb2Zr6O17 oxides. The oxidation mechanisms operating at different temperatures were discussed and a comparison of oxidation characteristics with the other alloys was conducted.

9.
Nat Commun ; 9(1): 629, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416048

RESUMO

The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article.

10.
Materials (Basel) ; 10(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29210990

RESUMO

This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu-0.1Cr-0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson-Mehl-Avrami-Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu-0.1Cr-0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12.

11.
Materials (Basel) ; 11(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29286328

RESUMO

The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

12.
Nat Commun ; 8(1): 1181, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29081493

RESUMO

In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.

13.
Opt Express ; 19(3): 1954-62, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369011

RESUMO

We designed, fabricated and characterized a nano-periodical highly-efficient blazed grating for extreme-ultraviolet (XUV) radiation. The grating was optimized by the rigorous coupled-wave analysis method (RCWA) and milled into the top layer of a highly-reflective mirror for IR light. The XUV diffraction efficiency was determined to be around 20% in the range from 35.5 to 79.2 nm. The effects of the nanograting on the reflectivity of the IR light and non-linear effects introduced by the nanograting have been measured and are discussed.


Assuntos
Nanotecnologia/instrumentação , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta
14.
Nature ; 466(7307): 739-43, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686571

RESUMO

The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...