Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202386

RESUMO

Pea (Pisum sativum L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown. Here, we compare the symbiotically responsive breeding line 'Triumph' of grain pea with its parental cultivars 'Vendevil' (a donor of high symbiotic responsivity) and 'Classic' (a donor of agriculturally valuable traits) using genome and transcriptome sequencing. We show that 'Triumph' inherited one-fourth of its genome from 'Vendevil', including the genes related to AM and nodule formation, and reveal that under combined inoculation with nodule bacteria and AM fungi, 'Triumph' and 'Vendevil', in contrast to 'Classic', demonstrate similar up-regulation of the genes related to solute transport, hormonal regulation and flavonoid biosynthesis in their roots. We also identify the gene PsGLP2, whose expression pattern distinguishing 'Triumph' and 'Vendevil' from 'Classic' correlates with difference within the promoter region sequence, making it a promising marker for the symbiotic responsivity trait. The results of this study may be helpful for future molecular breeding programs aimed at creation of symbiotically responsive cultivars of pea.

2.
Front Plant Sci ; 13: 884726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186063

RESUMO

Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.

3.
PeerJ ; 7: e7495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497392

RESUMO

Arbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea (Pisum sativum L.) leaves associated with mycorrhization at key plant developmental stages. Plants of pea cv. Finale were grown in constant environmental conditions under phosphate deficiency. The plants were analyzed at six distinct time points, which corresponded to certain developmental stages of the pea: I: 7 days post inoculation (DPI) when the second leaf is fully unfolded with one pair of leaflets and a simple tendril; II: 21 DPI at first leaf with two pairs of leaflets and a complex tendril; III: 32 DPI when the floral bud is enclosed; IV: 42 DPI at the first open flower; V: 56 DPI when the pod is filled with green seeds; and VI: 90-110 DPI at the dry harvest stage. Inoculation with Rhizophagus irregularis had no effect on the fresh or dry shoot weight, the leaf photochemical activity, accumulation of chlorophyll a, b or carotenoids. However, at stage III (corresponding to the most active phase of mycorrhiza development), the number of internodes between cotyledons and the youngest completely developed leaf was lower in the inoculated plants than in those without inoculation. Moreover, inoculation extended the vegetation period of the host plants, and resulted in increase of the average dry weight per seed at stage VI. The leaf metabolome, as analyzed with GC-MS, included about three hundred distinct metabolites and showed a strong correlation with plant age, and, to a lesser extent, was influenced by mycorrhization. Metabolic shifts influenced the levels of sugars, amino acids and other intermediates of nitrogen and phosphorus metabolism. The use of unsupervised dimension reduction methods showed that (i) at stage II, the metabolite spectra of inoculated plants were similar to those of the control, and (ii) at stages IV and V, the leaf metabolic profiles of inoculated plants shifted towards the profiles of the control plants at earlier developmental stages. At stage IV the inoculated plants exhibited a higher level of metabolism of nitrogen, organic acids, and lipophilic compounds in comparison to control plants. Thus, mycorrhization led to the retardation of plant development, which was also associated with higher seed biomass accumulation in plants with an extended vegetation period. The symbiotic crosstalk between host plant and AM fungi leads to alterations in several biochemical pathways the details of which need to be elucidated in further studies.

4.
PeerJ ; 7: e6662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972251

RESUMO

Large collections of pea symbiotic mutants were accumulated in the 1990s, but the causal genes for a large portion of the mutations are still not identified due to the complexity of the task. We applied a Mapping-by-Sequencing approach including Bulk Segregant Analysis and Massive Analysis of cDNA Ends (MACE-Seq) sequencing technology for genetic mapping the Sym11 gene of pea which controls the formation of symbioses with both nodule bacteria and arbuscular-mycorrhizal fungi. For mapping we developed an F 2-population from the cross between pea line N24 carrying the mutant allele of sym11 and the wild type NGB1238 (=JI0073) line. Sequencing libraries were prepared from bulks of 20 plants with mutant and 12 with wild-type phenotype. MACE-Seq differential gene expression analysis between mutant-phenotype and wild-type-phenotype bulks revealed 2,235 genes, of which 514 (23%) were up-regulated and 1,721 (77%) were down-regulated in plant roots inoculated with rhizobia as a consequence of sym11 mutation. MACE-Seq also detected single nucleotide variants between bulks in 217 pea genes. Using a novel mathematical model we calculated the recombination frequency (RF) between the Sym11 gene and these 217 polymorphic genes. Six genes with the lowest RF were converted into CAPS or dCAPS markers and genetically mapped on the complete mapping population of 108 F 2-plants which confirmed their tight linkage to Sym11 and to each other. The Medicago truncatula Gaertn. (Mt) homologs of these genes are located in a distinct region of Mt chromosome 5, which corresponds to linkage group I of pea. Among 94 candidate genes from this region only one was down-regulated-the pea Sym33 homolog of the Mt IPD3 gene which is essential for nodulation. Sequencing of the Sym33 allele of the N24 (sym11) mutant revealed a single nucleotide deletion (c.C319del) in its third exon resulting in a codon shift in the open reading frame and premature translation termination. Thus, we identified a novel mutant allele sym33-4 most probably responsible for the mutant phenotype of the N24 (sym11) line, thereby demonstrating that mapping by MACE-Seq can be successfully used for genetic mapping of mutations and identification of candidate genes in pea.

5.
Front Plant Sci ; 8: 1957, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184566

RESUMO

During the initial step of the symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria (rhizobia), the bacterial signal molecule known as the Nod factor (nodulation factor) is recognized by plant LysM motif-containing receptor-like kinases (LysM-RLKs). The fifth chromosome of barrel medic (Medicago truncatula Gaertn.) contains a cluster of paralogous LysM-RLK genes, one of which is known to participate in symbiosis. In the syntenic region of the pea (Pisum sativum L.) genome, three genes have been identified: PsK1 and PsSym37, two symbiosis-related LysM-RLK genes with known sequences, and the unsequenced PsSym2 gene which presumably encodes a LysM-RLK and is associated with increased selectivity to certain Nod factors. In this work, we identified a new gene encoding a LysM-RLK, designated as PsLykX, within the Sym2 genomic region. We sequenced the first exons (corresponding to the protein receptor domain) of PsSym37, PsK1, and PsLykX from a large set of pea genotypes of diverse origin. The nucleotide diversity of these fragments was estimated and groups of haplotypes for each gene were revealed. Footprints of selection pressure were detected via comparative analyses of SNP distribution across the first exons of these genes and their homologs MtLYK2, MtLYK3, and MtLYK4 from M. truncatula retrieved from the Medicago Hapmap project. Despite the remarkable similarity among all the studied genes, they exhibited contrasting selection signatures, possibly pointing to diversification of their functions. Signatures of balancing selection were found in LysM1-encoding parts of PsSym37 and PsK1, suggesting that the diversity of these parts may be important for pea LysM-RLKs. The first exons of PsSym37 and PsK1 displayed signatures of purifying selection, as well as MtLYK2 of M. truncatula. Evidence of positive selection affecting primarily LysM domains was found in all three investigated M. truncatula genes, as well as in the pea gene PsLykX. The data suggested that PsLykX is a promising candidate for PsSym2, which has remained elusive for more than 30 years.

6.
PLoS One ; 12(10): e0186713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073280

RESUMO

Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.


Assuntos
Bases de Dados Genéticas , Marcadores Genéticos , Genoma de Planta , Internet , Pisum sativum/genética , Software , Ligação Genética , Lotus/genética , Medicago truncatula/genética , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...