Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1230585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600308

RESUMO

Although many carriers for the delivery of chemotherapeutic drugs have been investigated, the disadvantages of passive targeting and uncontrolled drug release limit their utility. Herein, hyaluronic acid (HA) was hydrophobically modified to serve as a carrier for binding to cluster determinant 44 (CD44) overexpressed on tumor cell surfaces. Specifically, after deacetylation, HA was grafted to dodecylamine or tetradecylamine to afford amphiphilic zwitterionic polymer micelles, designated dHAD and dHAT, respectively, for the delivery of paclitaxel (PTX). The micelles were negatively charged at pH 7.4 and positively charged at pH 5.6, and this pH sensitivity facilitated PTX release under acidic conditions. The cell uptake efficiencies of the dHAD-PTX and dHAT-PTX micelles by MCF-7 cells after 4 h of incubation were 96.9% and 95.4%, respectively, and their affinities for CD44 were twice that of HA. Furthermore, the micelles markedly inhibited tumor growth both in vitro and in vivo, with IC50 values of 1.943 µg/mL for dHAD-PTX and 1.874 µg/mL for dHAT-PTX for MCF-7 cells; the tumor inhibition rate of dHAD-PTX (92.96%) was higher than that of dHAT-PTX (78.65%). Importantly, dHAD and dHAT micelles showed negligible systemic toxicity. Our findings suggest that these micelles are promising delivery vehicles for antitumor drugs.

2.
Chirality ; 35(4): 247-255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759185

RESUMO

Flurbiprofen axetil (FA) is a prodrug of flurbiprofen (FP), and it is hydrolyzed to the active FP by carboxylesterase in plasma after intravenous injection. The pharmacological action of FP is closely related to its chirality, and S-FP shows better analgesic effects than R-FP. Therefore, it is of great significance to compare the in vivo pharmacokinetic behaviors of R-FP and S-FP. In this study, we designed a sensitive high performance liquid chromatography-tandem mass spectrometry method and used CHIRALPAK-IG3 column for chiral separation to quantify the concentrations of R-FP and S-FP in rat plasma. The results show that this method can accurately and effectively analyze the contents of R-FP and S-FP in plasma. In addition, the systemic exposure was approximately 3.09-folds for the S-FP compared with the R-FP following intravenous administration of the FA to rats at a single dose of 4.5 mg/kg. More importantly, the clearance rate of S-FP is significantly smaller than that of R-FP. Therefore, the development of S-FA injectable emulsion for clinical treatment of postoperative pain is very necessary.


Assuntos
Flurbiprofeno , Ratos , Animais , Flurbiprofeno/farmacocinética , Injeções Intravenosas , Estereoisomerismo , Anti-Inflamatórios não Esteroides/farmacocinética
3.
Biomater Adv ; 139: 212984, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882140

RESUMO

Ionizable cationic lipids have great potential for gene delivery, yet the effect of the molecular structure of such lipids on gene delivery efficiency is an ongoing research challenge. To better understand corresponding structure-function activity relationships, we synthesized four ester-linked, pH-responsive, ionizable cationic lipids. The screened DEDM4 lipid, containing 2-ethylenedimethylamine in the headgroup and a branched-chain tail, exhibited a high delivery efficacy of plasmid DNA and siRNA in A549 cells, which was comparable with that of the commercial reagent lipofectamine 3000 (lipo3000). Moreover, because of its pKa value of 6.35 and pH-sensitivity under acidic conditions, DEDM4 could carry sufficient positive charge in the acidic environment of endosomes and interact with the endosome lumen, leading to destruction of the endomembrane and subsequent release of siRNA into the cytoplasm with endosomal escape. Furthermore, we used DEDM4 to deliver IGF-1R siRNA to induce cancer cell apoptosis, thereby leading to great tumor inhibition. More importantly, it also showed very low toxicity in vivo. These structure-activity data for DEDM4 demonstrate potential clinical applications of DEDM4-mediated gene delivery for cancer.


Assuntos
Ésteres , Lipídeos , Cátions/química , Concentração de Íons de Hidrogênio , Lipídeos/química , RNA Interferente Pequeno/genética
4.
Int J Biol Macromol ; 206: 489-500, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240214

RESUMO

Although many chemotherapy prodrugs have been developed for tumor therapy, non-targeted delivery, uncontrolled release and tedious construction procedure of prodrugs still limit their clinical application in tumor treatment. In this work, hyaluronic acid (HA) which has tumor-targeting ability was used to conjugate to antitumor drug podophyllotoxin (PPT) to construct a pH-sensitive prodrug named HA-CO-O-PPT just via a one-step esterification reaction. The HA-CO-O-PPT spontaneously assembled into nano spherical micelles in aqueous medium, which had outstanding serum stability and blood compatibility. The obtained prodrug micelles (named HP micelles) exhibited a pH-responsive drug release mode with cumulative release reaching 81.2% due to their dissociation in response to acid stimulus, and had a high cellular uptake efficiency beyond 97% owing to HA receptor-mediated targeting. Furthermore, it was found that the prodrug micelles showed excellent antitumor activities in vivo with the tumor inhibition ratio up to 85% and negligible systemic toxicity. Accordingly, the pH-responsive HP micelles constructed by a simple one-step reaction, could be a promising candidate as a chemotherapeutic agent for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/uso terapêutico , Concentração de Íons de Hidrogênio , Micelas , Neoplasias/tratamento farmacológico , Podofilotoxina/farmacologia
5.
Int J Pharm ; 617: 121596, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181463

RESUMO

Ionizable lipids are the leading vectors for gene therapy. Understanding the effects of molecular structure on efficient gene delivery is one of the most important challenges for maximizing the utility of such lipid vectors. We synthesized an array of pH-responsive and ionizable lipids to investigate the relationship between lipid structure and activity. The optimized lipid (EDM) has double tertiary amines in the headgroup and an ester linker. EDM exhibited efficient DNA and siRNA delivery to, and gene silencing of, A549 cells. EDM has a pKa value of 6.67, which enabled it to quickly escape from the endosome after entering the cell; the ester linkages rapidly degraded and enabled gene release into the cytoplasm. EDM also delivered IGF-1R siRNA to inhibit tumor growth and induce cancer cell apoptosis by efficient inhibition of IGF-1R expression in mice. Our study on the structure-activity relationships of ionizable lipids will facilitate clinical applications.


Assuntos
Lipídeos , Nanopartículas , Animais , Terapia Genética , Concentração de Íons de Hidrogênio , Lipídeos/química , Camundongos , Nanopartículas/química , RNA Interferente Pequeno/metabolismo , Relação Estrutura-Atividade
6.
J Control Release ; 335: 158-177, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33984344

RESUMO

The success of skin cancer treatment is severely limited in the route of administration because most genes and drugs cannot break through the excellent stratum corneum (SC) barrier of the skin, leading to their inability to reach the tumor tissues at therapeutic doses. As an excellent minimally invasive delivery method, microneedles (MNs) can bypass the SC and enter the skin microcirculation to achieve drug and gene delivery when used to puncture the skin. Compared with traditional administration approaches, MN-assisted gene and drug delivery have obvious advantages, in that they are simple, safe, painless, easily transport genes (such as DNA and siRNA (small interfering RNA)) and macromolecule drugs (including proteins and antibodies), and have good reproducibility. Besides, other treatment strategies including photothermal therapy (PTT) have been combined with MN arrays containing genes or drugs, which is expected to improve the therapeutic effect of skin cancer. Therefore, this review summarizes the latest developments in MNs for gene and/or drug delivery, with a focus on their performances as effective MNs for skin cancer treatment.


Assuntos
Preparações Farmacêuticas , Neoplasias Cutâneas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Humanos , Microinjeções , Agulhas , Reprodutibilidade dos Testes , Pele , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética
7.
Colloids Surf B Biointerfaces ; 201: 111623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33636597

RESUMO

Conventional chemotherapy for tumor treatment remains flawed because it fails to limit cytotoxicity to a small set of selectable tissues. Active targeting techniques for the delivery of drugs to specific sites are increasingly used to enhance drug accumulation at tumor sites with the aim of reducing side effects in vivo. Liposomes, modified with different targeting ligands, are considered to be one of the most promising targeted drug carriers. Herein, novel linear and cyclic arginine-glycine-aspartate (RGD) peptide-based lipids were synthesized to develop modified liposomal drug delivery systems with active targeting and pH-sensitivity. The RGD-modified liposomes showed excellent active targeting ability for integrin αvß3 receptors, resulting in improved cellular uptake. The modified liposomes also enhanced intracellular doxorubicin (DOX) release because of their degradation in an acidic environment. Consequently, the RGD-modified, DOX-loaded liposomes exhibited significant antitumor efficacy and low toxicity in vitro and in vivo. In particular, 5% cRGD-lipid modified DOX-loaded liposome showed the greatest inhibition of tumor growth in mice among the tested formulations, and much less toxicity than free DOX. In conclusion, the DOX-loaded pH-sensitive liposome modified with 5% cRGD-lipid developed in the current study provides a potential approach for improved tumor therapy.


Assuntos
Lipossomos , Neoplasias Pulmonares , Animais , Antibióticos Antineoplásicos , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Integrina alfaVbeta3 , Neoplasias Pulmonares/tratamento farmacológico , Camundongos
9.
J Nanobiotechnology ; 18(1): 144, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069258

RESUMO

BACKGROUND: During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency. RESULTS: As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp (- 0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in HeLa cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplex was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the "proton sponge effect" of the lipid. CONCLUSIONS: The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


Assuntos
Terapia Genética/métodos , Lipídeos/química , Lipossomos/química , Peptídeos/química , Cátions/química , Membrana Celular , DNA/química , Endossomos , Técnicas de Transferência de Genes , Células HeLa , Humanos , Cinética , Lipossomos/metabolismo , Transfecção
10.
Drug Deliv ; 27(1): 1397-1411, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096948

RESUMO

The combination of chemotherapeutic drug paclitaxel (PTX) and VEGF siRNA could inhibit cancer development with synergistic efficacy. However, efficient and safe delivery systems with high encapsulation efficiency of PTX and a long-time release of drugs are urgently needed. In this study, novel nanoparticles (PTX/siRNA/FALS) were constructed by using tripeptide lipid (L), sucrose laurate (S), and folate-PEG2000-DSPE (FA) to co-deliver PTX and siRNA. The cancer cell targeting nanoparticle carrier (PTX/siRNA/FALS) showed anticipated PTX encapsulation efficiency, siRNA retardation ability, improved cell uptake and sustained and controlled drug release. It led to significant anti-tumor activity in vitro and in vivo by efficient inhibition of VEGF expression and induction of cancer cell apoptosis. Importantly, the biocompatibility of the carriers and low dosage of PTX required for effective therapy greatly reduced the toxicity to mice. The targeting nanoparticles show potential as an effective co-delivery platform for RNAi and chemotherapy drugs, aiming to improve the efficacy of cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lipídeos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
J Control Release ; 325: 52-71, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619742

RESUMO

Microneedles (MNs), as an effective minimally invasive delivery route, when used to puncture the skin, can bypass the skin's stratum corneum (SC) to enter the skin microcirculation and achieve systemic administration. Additionally, the MN route has obvious advantages over other routes of administration, including simplicity, non-pain, readily-permitted transport of drugs (including DNA and metformin) and macromolecules (such as antibodies and proteins), good repeatability, and wide range of clinical applications and safety. MNs have been combined with various therapy strategies including photodynamic therapy (PDT) and photothermal therapy (PTT) to treat many diseases, and hold great promise for improving the diagnosis and treatment of diseases. Both MN-assisted PDT and PTT are light-mediated phototherapy methods and have unique advantages, including improved selectivity, and minimal invasiveness and side effects. MN-assisted PDT or PTT has been studied for various applications by many research groups and pharmaceutical companies worldwide. Therefore, this review summarizes recent advances in MNs for PDT or PTT.


Assuntos
Ouro , Fotoquimioterapia , Administração Cutânea , Fototerapia , Terapia Fototérmica
12.
ACS Appl Mater Interfaces ; 12(19): 22074-22087, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32083833

RESUMO

Silencing the inhibitor of apoptosis (IAP) by RNAi is a promising method for tumor therapy. One of the major challenges lies in how to sequentially overcome the system barriers in the course of the tumor targeting delivery, especially in the tumor accumulation and penetration. Herein we developed a novel stimuli-responsive polysaccharide enveloped liposome carrier, which was constructed by layer-by-layer depositing redox-sensitive amphiphilic chitosan (CS) and hyaluronic acid (HA) onto the liposome and then loading IAP inhibitor survivin-shRNA gene and permeation promoter hyaluronidase (HAase) sequentially. The as-prepared HA/HAase/CS/liposome/shRNA (HCLR) nanocarrier was verified to be stable in blood circulation due to the negative charged HA shield. The tumor targeting recognition and the enhanced tumor accumulation of HCLR were visualized by fluorescence resonance energy transfer (FRET) and in vivo fluorescence biodistribution. The deshielding of HA and the protonizing of CS in slightly acidic tumor extracellular pH environment (pHe, 6.8-6.5) were demonstrated by ζ potential change from -23.1 to 29.9 mV. The pHe-responsive HAase release was confirmed in the tumor extracellular mimicking environments, and the intratumoral biodistribution showed that the tumor penetration of HCLR was improved. The cell uptake of HCLR in pHe environment was significantly enhanced compared with that in physiological pH environment. The increased shRNA release of HCLR was approved in 10 mM glutathione (GSH) and tumor cells. Surprisingly, HCLR suppressed the tumor growth markedly through survivin silencing and meanwhile maintained low toxicity to mice. This study indicates that the novel polysaccharide enveloped HCLR is promising in clinical translation, thanks to the stimuli-triggered tumor accumulation, tumor penetration, cell uptake, and intracellular gene release.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Lipossomos/química , Polissacarídeos/química , RNA Interferente Pequeno/uso terapêutico , Survivina/genética , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Quitosana/metabolismo , Técnicas de Transferência de Genes , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Lipossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Polissacarídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Acta Biomater ; 102: 13-34, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759124

RESUMO

Among various nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) have been increasingly studied for their excellent superparamagnetism, magnetic heating properties, and enhanced magnetic resonance imaging (MRI). The conjugation of SPIONs with drugs to obtain delivery nanosystems has several advantages including magnetic targeted functionalization, in vivo imaging, magnetic thermotherapy, and combined delivery of anticancer agents. To further increase the targeting efficiency of drugs through a delivery nanosystem based on SPIONs, additional targeting moieties including transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides are coated onto the surface of SPIONs. Therefore, this review summarizes the latest progresses in the conjugation of targeting molecules and drug delivery nanosystems based on SPIONs, especially focusing on their performances to develop efficient targeted drug delivery systems for tumor therapy. STATEMENT OF SIGNIFICANCE: Some magnetic nanoparticle-based nanocarriers loaded with drugs were evaluated in patients and did not produce convincing results, leading to termination of clinical development in phase II/III. An alternative strategy for drug delivery systems based on SPIONs is the conjugation of these systems with targeting segments such as transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides. These targeting moieties can be recognized by specific integrin/receptors that are overexpressed specifically on the tumor cell surface, resulting in minimizing dosage and reducing off-target effects. This review focuses on magnetic nanoparticle-based nonviral drug delivery systems with targeting moieties to deliver anticancer drugs, with an aim to provide suggestions on the development of SPIONs through discussion.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Animais , Ácido Fólico/química , Humanos , Ácido Hialurônico/química , Neoplasias/diagnóstico por imagem
14.
Toxicol Res (Camb) ; 7(3): 473-479, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30090597

RESUMO

As effective non-viral vectors of gene therapy, cationic lipids still have the problem of toxicity, which has become one of the main bottlenecks for their applications. The toxicity of cationic lipids is strongly connected to the headgroup structures. In this article, we studied the cytotoxicity of two cationic lipids with a quaternary ammonium headgroup (CDA14) and a tri-peptide headgroup (CDO14), respectively, and with the same linker bond and hydrophobic domain. The IC50 values of CDA14 and CDO14 against NCI-H460 cells were 109.4 µg mL-1 and 340.5 µg mL-1, respectively. To determine the effects of headgroup structures of cationic lipids on cytotoxicity, apoptosis related pathways were investigated. As the lipids with a quaternary ammonium headgroup could induce more apoptotic cells than the ones with a peptide headgroup, the enzymatic activity of caspase-9 and caspase-3 increased obviously, whereas the mitochondrial membrane potential (MMP) decreased. At the same time, the reactive oxygen species (ROS) levels also increased and the cell cycle was arrested at the S phase. The results showed that the toxicity of the cationic lipid had a close relationship with its headgroup structures, and the cytotoxic mechanism was mainly via the caspase activation dependent signaling pathway and mitochondrial dysfunction. Through this study, we hope to provide the scientific basis for exploiting safer and more efficient cationic lipids for gene delivery.

15.
Bioorg Med Chem ; 26(12): 3535-3540, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29801966

RESUMO

In this paper, two novel carbamate-linked quaternary ammonium lipids (MU18: a lipid with a mono-ammonium head; GU18: a lipid with a Gemini-ammonium head) containing unsaturated hydrophobic chains were designed and synthesized. The chemical structures of the synthetic lipids were characterized by infrared spectrum, ESI-MS, 1H NMR, 13C NMR, and HPLC. For investigating the effect of unsaturation on gene delivery, the previous reported saturated cationic liposomes (MS18 and GS18) were used as comparison. Cationic liposomes were prepared by using these cationic lipids and neutral lipid DOPE at the molar ratio of 1:1. Particle sizes and zeta potentials of the cationic liposomes were studied to show that they were suitable for gene transfection. The binding abilities of the cationic liposomes were investigated by gel electrophoresis at various N/P ratios from 0.5/1 to 8/1. The results indicated that the binding ability of GU18 was much better than MU18 and the saturated cationic liposomes (MS18 and GS18). DNA transfection of these liposomes comparable to commercially available reagent (DOTAP) was achieved in vitro against Hela, HepG-2 and NCI-H460 cell lines. GU18 showed higher transfection at the N/P ratio of 3/1 than other cationic liposomes and the positive control, DOTAP. All of the liposomes presented a relatively low cytotoxicity, which was measured by MTT. Therefore, the synthetic lipids bearing unsaturated hydrophobic chains and Gemini-head could be promising candidates for gene delivery.


Assuntos
Carbamatos/química , Lipídeos/química , Lipossomos/química , Compostos de Amônio Quaternário/química , Transfecção , Cátions/química , Linhagem Celular Tumoral , Células HeLa , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
16.
Adv Colloid Interface Sci ; 253: 117-140, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29454463

RESUMO

Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.


Assuntos
Técnicas de Transferência de Genes , Lipídeos/química , Lipossomos/química , Transgenes , Cátions , DNA/química , DNA/farmacocinética , Terapia Genética/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo
17.
Curr Med Chem ; 25(28): 3319-3332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332569

RESUMO

There are several mechanisms by which cancer cells develop resistance to treatments, including increasing anti-apoptosis, increasing drug efflux, inducing angiogenesis, enhancing DNA repair and altering cell cycle checkpoints. The drugs are hard to reach curative effects due to these resistance mechanisms. It has been suggested that liposomes based co-delivery systems, which can deliver drugs and genes to the same tumor cells and exhibit synergistic anti-cancer effects, could be used to overcome the resistance of cancer cells. As the co-delivery systems could simultaneously block two or more pathways, this might promote the death of cancer cells by sensitizing cells to death stimuli. This article provides a brief review on the liposomes based co-delivery systems to overcome cancer resistance by the synergistic effects of drugs and genes. Particularly, the synergistic effects of combinatorial anticancer drugs and genes in various cancer models employing multifunctional liposomes based co-delivery systems have been discussed. This review also gives new insights into the challenges of liposomes based co-delivery systems in the field of cancer therapy, by which we hope to provide some suggestions on the development of liposomes based co-delivery systems.


Assuntos
Antineoplásicos/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
18.
J Mater Chem B ; 6(45): 7530-7542, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254755

RESUMO

Stimuli-responsive delivery systems show great promise in meeting the requirements of several delivery stages to achieve satisfactory gene transfection. This report describes a novel stimuli-responsive nanocarrier consisting of a dual stimuli-responsive chitosan (SCS) core and a polyethyleneimine (PEI) and polyethylene glycol (PEG) corona. The SCS core was constructed by cross-linking bio-safe chitosan saccharide via pH-sensitive hydrazone bonds and redox-sensitive disulfide bonds, which conferred the nanocarrier with a dual stimuli-responsive property. PEG and low-molecular-weight PEI were further immobilized on the core to endow the synthesized SCS-g-PEI-g-PEG with improved gene condensation, prolonged circulation and enhanced lysosome escape. In vitro and in vivo Birc5-shRNA delivery results revealed that significantly enhanced gene expression and tumor inhibition were achieved by SCS-g-PEI-g-PEG, compared with the non-stimuli-responsive counterpart CS-g-PEI-g-PEG. Moreover, the SCS-g-PEI-g-PEG nanocarrier was biocompatible as shown in both in vitro and in vivo toxicity evaluations. This study may provide a promising strategy for constructing an efficient and bio-safe delivery system for gene therapy.

19.
Bioorg Med Chem Lett ; 26(16): 4025-9, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426864

RESUMO

In our previous Letter, we have carried out the synthesis of a novel DDCTMA cationic lipid which was formulated with DOPE for gene delivery. Herein, we used folic acid (FA) as targeting ligand and cholesterol (Chol) as helper lipid instead of DOPE for enhancing the stability of the liposomes. These liposomes were characterized by dynamic laser scattering (DLS), transmission electron microscopy (TEM) and agarose gel electrophoresis assays of pDNA binding affinity. The lipoplexes were prepared by using different weight ratios of DDCTMA/Chol (1:1, 2:1, 3:1, 4:1) liposomes and different concentrations of FA (50-200µg/mL) combining with pDNA. The transfection efficiencies of the lipoplexes were evaluated using pGFP-N2 and pGL3 plasmid DNA against NCI-H460 cells in vitro. Among them, the optimum gene transfection efficiency with DDCTMA/Chol (3:1)/FA (100µg/mL) was obtained. The results showed that FA could improve the gene transfection efficiencies of DDCTMA/Chol cationic liposome. Our results also convincingly demonstrated FA (100µg/mL)-coated DDCTMA/Chol (3:1) cationic liposome could serve as a promising candidate for the gene delivery.


Assuntos
Ácido Fólico/química , Lipossomos/metabolismo , Transfecção , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Difusão Dinâmica da Luz , Genes Reporter , Humanos , Lipossomos/química , Lipossomos/toxicidade , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Plasmídeos/química , Plasmídeos/metabolismo
20.
Acta Biomater ; 36: 21-41, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045350

RESUMO

UNLABELLED: To use siRNA (small interfering RNA) for gene therapy, a gene delivery system is often necessary to overcome several challenging requirements including rapid excretion, low stability in blood serum, non-specific accumulation in tissues, poor cellular uptake and inefficient intracellular release. Active and/or passive targeting should help the delivery system to reach the desired tissue or cell, to be internalized, and to deliver siRNA to the cytoplasm so that siRNA can inhibit protein synthesis. This review covers conjugates of small targeting molecules and non-viral delivery systems for the mediation of siRNA, with a focus on their transfection properties in order to help the development of new and efficient siRNA delivery systems, as the therapeutic solutions of tomorrow. STATEMENT OF SIGNIFICANCE: The delivery of siRNA into cells or tissues remains to be a challenge for its applications, an alternative strategy for siRNA delivery systems is direct conjugation of non-viral vectors with targeting moieties for cellular delivery. In comparison to macromolecules, small targeting molecules have attracted great attention due to their many potential advantages including significant simplicity and ease of production, good repeatability and biodegradability. This review will focus on the most recent advances in the delivery of siRNA using conjugates of small targeting molecules and non-viral delivery systems. Based the editor's suggestions, we hope the revised manuscript could provide more profound understanding to the conjugates of targeting molecules to vectors for mediation of siRNA.


Assuntos
Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , Terapia Genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...