Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (183)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660707

RESUMO

Principles of DNA folding in the cell nucleus and its dynamic transformations that occur during the fulfillment of basic genetic functions (transcription, replication, segregation, etc.) remain poorly understood, partially due to the lack of experimental approaches to high-resolution visualization of specific chromatin loci in structurally preserved nuclei. Here we present a protocol for the visualization of replicative domains in monolayer cell culture in situ, by combining EdU labeling of newly synthesized DNA with subsequent label detection with Ag-amplification of Nanogold particles and ChromEM staining of chromatin. This protocol allows for the high-contrast, high-efficiency pre-embedding labeling, compatible with traditional glutaraldehyde fixation that provides the best structural preservation of chromatin for room-temperature sample processing. Another advantage of pre-embedding labeling is the possibility to pre-select cells of interest for sectioning. This is especially important for the analysis of heterogeneous cell populations, as well as compatibility with electron tomography approaches to high-resolution 3D analysis of chromatin organization at sites of replication, and the analysis of post-replicative chromatin rearrangement and sister chromatid segregation in the interphase.


Assuntos
Cromatina , Tomografia com Microscopia Eletrônica , Núcleo Celular/genética , Cromatina/genética , Cromossomos , DNA/química , Interfase
2.
Biochemistry (Mosc) ; 86(10): 1288-1300, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903160

RESUMO

One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.


Assuntos
Lamina Tipo A/metabolismo , Neoplasias/metabolismo , Lâmina Nuclear/metabolismo , Animais , Movimento Celular/fisiologia , Núcleo Celular/química , Núcleo Celular/metabolismo , Elasticidade , Matriz Extracelular/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/patologia
3.
Front Cell Dev Biol ; 9: 784440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174159

RESUMO

A detailed understanding of the principles of the structural organization of genetic material is of great importance for elucidating the mechanisms of differential regulation of genes in development. Modern ideas about the spatial organization of the genome are based on a microscopic analysis of chromatin structure and molecular data on DNA-DNA contact analysis using Chromatin conformation capture (3C) technology, ranging from the "polymer melt" model to a hierarchical folding concept. Heterogeneity of chromatin structure depending on its functional state and cell cycle progression brings another layer of complexity to the interpretation of structural data and requires selective labeling of various transcriptional states under nondestructive conditions. Here, we use a modified approach for replication timing-based metabolic labeling of transcriptionally active chromatin for ultrastructural analysis. The method allows pre-embedding labeling of optimally structurally preserved chromatin, thus making it compatible with various 3D-TEM techniques including electron tomography. By using variable pulse duration, we demonstrate that euchromatic genomic regions adopt a fiber-like higher-order structure of about 200 nm in diameter (chromonema), thus providing support for a hierarchical folding model of chromatin organization as well as the idea of transcription and replication occurring on a highly structured chromatin template.

4.
Chromosoma ; 127(4): 529-537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291421

RESUMO

Nuclear bodies are relatively immobile organelles. Here, we investigated the mechanisms underlying their movement using experimentally induced interphase prenucleolar bodies (iPNBs). Most iPNBs demonstrated constrained diffusion, exhibiting infrequent fusions with other iPNBs and nucleoli. Fusion events were actin-independent and appeared to be the consequence of stochastic collisions between iPNBs. Most iPNBs were surrounded by condensed chromatin, while fusing iPNBs were usually found in a single heterochromatin-delimited compartment ("cage"). The experimentally induced over-condensation of chromatin significantly decreased the frequency of iPNB fusion. Thus, the data obtained indicate that the mobility of nuclear bodies is restricted by heterochromatin.


Assuntos
Estruturas do Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Estruturas do Núcleo Celular/genética , Cromatina/metabolismo , Células HeLa , Humanos , Interfase , Imagem com Lapso de Tempo
5.
Planta ; 245(1): 193-205, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714454

RESUMO

MAIN CONCLUSION: The plant-specific 4/1 protein interacts, both in yeast two-hybrid system and in vitro, and co-localizes in plant cells with plant BAP-like protein, the orthologue of human protein BAP31. In yeast two-hybrid system, we identified a number of Nicotiana benthamiana protein interactors of Nt-4/1, the protein known to affect systemic transport of potato spindle tuber viroid. For one of these interactors, an orthologue of human B-cell receptor-associated protein 31 (BAP31) termed plant BAP-like protein (PBL), the ability to interact with Nt-4/1 was studied in greater detail. Analyses of purified proteins expressed in bacterial cells carried out in vitro with the surface plasmon resonance (SPR) spectroscopy revealed that the N. tabacum PBL (NtPBL) was able to interact with Nt-4/1 with high-affinity, and that their complex can form at physiologically relevant concentrations of both proteins. Subcellular localization studies of 4/1-GFP and NtPBL-mRFP transiently co-expressed in plant cells revealed the co-localization of the two fusion proteins in endoplasmic reticulum-associated bodies, suggesting their interaction in vivo. The N-terminal region of the Nt-4/1 protein was found to be required for the specific subcellular targeting of the protein, presumably due to a predicted amphipathic helix mediating association of the Nt-4/1 protein with cell membranes. Additionally, this region was found to contain a trans-activator domain responsible for the Nt-4/1 ability to activate transcription of a reporter gene in yeast.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Nicotiana/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Humanos , Cinética , Epiderme Vegetal/citologia , Proteínas de Plantas/química , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Frações Subcelulares/metabolismo , Ressonância de Plasmônio de Superfície , Ativação Transcricional/genética , Técnicas do Sistema de Duplo-Híbrido
6.
J Nanobiotechnology ; 14(1): 67, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576904

RESUMO

BACKGROUND: A new type of superparamagnetic nanoparticles with chemical formula Fe7C3@C (MNPs) showed higher value of magnetization compared to traditionally used iron oxide-based nanoparticles as was shown in our previous studies. The in vitro biocompatibility tests demonstrated that the MNPs display high efficiency of cellular uptake and do not affect cyto-physiological parameters of cultured cells. These MNPs display effective magnetocontrollability in homogeneous liquids but their behavior in cytoplasm of living cells under the effect of magnetic field was not carefully analyzed yet. RESULTS: In this work we investigated the magnetocontrollability of MNPs interacting with living cells in permanent magnetic field. It has been shown that cells were capable of capturing MNPs by upper part of the cell membrane, and from the surface of the cultivation substrate during motion process. Immunofluorescence studies using intracellular endosomal membrane marker showed that MNP agglomerates can be either located in endosomes or lying free in the cytoplasm. When attached cells were exposed to a magnetic field up to 0.15 T, the MNPs acquired magnetic moment and the displacement of incorporated MNP agglomerates in the direction of the magnet was observed. Weakly attached or non-attached cells, such as cells in mitosis or after cytoskeleton damaging treatments moved towards the magnet. During long time cultivation of cells with MNPs in a magnetic field gradual clearing of cells from MNPs was observed. It was the result of removing MNPs from the surface of the cell agglomerates discarded in the process of exocytosis. CONCLUSIONS: Our data allow us to conclude for the first time that the magnetic properties of the MNPs are sufficient for successful manipulation with MNP agglomerates both at the intracellular level, and within the whole cell. The structure of the outer shells of the MNPs allows firmly associate different types of biological molecules with them. This creates prospects for the use of such complexes for targeted delivery and selective removal of selected biological molecules from living cells.


Assuntos
Técnicas Citológicas/métodos , Nanopartículas de Magnetita/química , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose/fisiologia , Humanos , Espaço Intracelular/química , Magnetismo , Microscopia Eletrônica de Transmissão
7.
Curr Biol ; 26(18): 2527-2534, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27568589

RESUMO

In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Animais , Células CHO , Linhagem Celular , Núcleo Celular , Cricetulus , Interfase , Imagem com Lapso de Tempo
8.
Histochem Cell Biol ; 145(4): 419-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883443

RESUMO

The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.


Assuntos
Interfase , Lâmina Nuclear/metabolismo , Animais , Células Cultivadas , Cricetulus , Humanos , Camundongos , Lâmina Nuclear/química , Suínos
9.
Cytokine ; 64(1): 131-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962752

RESUMO

Gamma irradiation of tissues and organs leads to many pathological consequences due to the formation of reactive oxygen species, DNA damage and the subsequent massive death of cells. The therapeutic use of gamma irradiation in the treatment of cancer is based on its penetrating power and damaging effects on tumor cells. Other effects from the irradiation are unnoticeable in comparison. Moreover, the long-term consequences of gamma irradiation are still poorly understood. When a donor bone marrow plug is implanted under the renal capsule of a syngeneic animal, а hematopoietic ectopic focus is formed. The size of the focus is increased in mice that received irradiation compared to non-irradiated ones, regardless of the amount of time between irradiation and bone marrow plug implantation. Long-term repetitive injections of blood serum from irradiated mice given to syngeneic non-irradiated recipients of bone marrow plugs also lead to the formation of enlarged foci. Hence, the blood of irradiated animals must contain an activity that induces the growth of a hematopoietic microenvironment. It was previously shown that the bones of irradiated animals secrete a growth factor required to create stromal microenvironments. The identity of this factor has, until now, been difficult to obtain. We demonstrated that interleukin 1 beta (IL-1) stimulates the growth of murine bone marrow stromal cells in vitro and in vivo. It was shown that the expression of the Il1b gene and the secretion of its product, IL-1, were activated in bone cells long after total body gamma irradiation. Hence, IL-1, or proteins regulated by this cytokine, appears to be the same stromal growth factor previously observed in the serum of irradiated animals. Our data demonstrate several non-canonical functions of IL-1. In addition, the presence of up-regulated levels of IL-1 long after irradiation points to an unknown mechanism governing its gene expression.


Assuntos
Células da Medula Óssea/efeitos da radiação , Interleucina-1beta/biossíntese , Células-Tronco Mesenquimais/efeitos da radiação , Animais , Células da Medula Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Proliferação de Células/efeitos da radiação , Células Cultivadas , Quimera , Feminino , Raios gama , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
10.
Exp Hematol ; 40(10): 847-56.e4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22728032

RESUMO

Multipotent mesenchymal stromal cells (MMSCs) are a heterogeneous population consisting of cells with a distinct proliferative potential. The aim of this study was to define clonal composition in MMSCs and trace the dynamics of individual clones in MMSC subpopulations with different proliferative potentials during the process of cultivation. The investigation was performed at single-cell level using genetically marked cells. Specifically, human bone marrow MMSCs were infected with a lentiviral vector-bearing marker gene. Integration site analysis was performed for clones at each passage by ligation-mediated polymerase chain reaction and Southern blot hybridization. Sibling connections between clones and clonal composition of MMSC culture at each passage were revealed. The MMSC population contained multiple, different, mainly small, clones. It was found that large long-living clones with a high, but limited proliferative potential could be detected rarely in MMSCs population. These data suggest that the human MMSC population does not fit the "stem cell" criteria, however, MMSCs may contain a subpopulation of large clones with a high proliferative potential.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Marcadores Genéticos , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo
11.
Stem Cells Int ; 2012: 968213, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242033

RESUMO

The efficacy and the safety of the administration of multipotent mesenchymal stromal cells (MMSCs) for acute graft-versus-host disease (aGVHD) prophylaxis following allogeneic hematopoietic cell transplantation (HSCT) were studied. This prospective clinical trial was based on the random patient allocation to the following two groups receiving (1) standard GVHD prophylaxis and (2) standard GVHD prophylaxis combined with MMSCs infusion. Bone marrow MMSCs from hematopoietic stem cell donors were cultured and administered to the recipients at doses of 0.9-1.3 × 10(6)/kg when the blood counts indicated recovery. aGVHD of stage II-IV developed in 38.9% and 5.3% of patients in group 1 and group 2, respectively, (P = 0.002). There were no differences in the graft rejection rates, chronic GVHD development, or infectious complications. Overall mortality was 16.7% for patients in group 1 and 5.3% for patients in group 2. The efficacy and the safety of MMSC administration for aGVHD prophylaxis were demonstrated in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...