Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202320223, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588224

RESUMO

Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.

2.
Phytomedicine ; 104: 154270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35760023

RESUMO

BACKGROUND: Rhododendron nivale Hook. f (R.n), one of the four Manna Stash used in Tibetan medicine to delay aging, possesses anti-aging pharmacological activity. However, which R.n ingredients contain anti-aging properties and the underlying mechanisms involved are unclear. HYPOTHESIS/PURPOSE: Based on interactions between gut microbiota and natural medicines and the important role of gut microbiota in anti-aging, the study investigated the hypothesis that R.n possesses anti-aging properties and the interaction of gut microbiota with R.n is responsible for its anti-aging effects. STUDY DESIGN: The primary active ingredients of R.n and their target function and pathway enrichment were explored. An aging mouse model was used to clarify the underlying anti-aging mechanisms of R.n. METHODS: Chromatography, spectroscopy, nuclear magnetic technology, and pharmacology were used to reveal the major active ingredients of ethanol extract residues of R.n (RNEA). The target function and pathway enrichment of these active ingredients were explored. Plasma metabolomics coupled with intestinal flora evaluation and bioinformatics analysis was used to clarify the underlying anti-aging mechanisms of RNEA. RESULTS: Myricetin-3-ß-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-ß-D-galactoside, and diplomorphanin B were separated and identified from RNEA. The network pharmacology study revealed that the active ingredients' target function and pathway enrichment focused mainly on the glutathione antioxidant system. In a D-galactose-induced mouse model of aging, RNEA was shown to possess suitable anti-aging pharmacological activity, as indicated by the amelioration of memory loss and weakened superoxide dismutase and glutathione peroxidase activities. Plasma metabolomics coupled with intestinal flora examination and bioinformatics analysis revealed that RNEA could regulate the expression of glutathione-related enzymes and ameliorate D-galactose-induced imbalances in methionine, glycine, and serine, and betaine and galactose metabolism. The results showed that RNEA reshaped the disordered intestinal flora and mitigated the D-galactose-mediated decline in glutathione oxidase expression, further confirming that the anti-aging effect of RNEA was closely related to regulation of the glutathione antioxidant system. CONCLUSION: RNEA, consisting of myricetin-3-ß-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-ß-D-galactoside, and diplomorphanin B, possesses anti-aging activity. The anti-aging effect of RNEA might be due to reshaping intestinal flora homeostasis, increasing the expression of glutathione peroxidase 4 in the intestines and liver, enhancing glutathione peroxidase activity, and reinforcing the glutathione antioxidant system.


Assuntos
Microbioma Gastrointestinal , Éteres Metílicos , Rhododendron , Envelhecimento , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Flavonoides/farmacologia , Galactose/farmacologia , Galactosídeos/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Éteres Metílicos/farmacologia , Camundongos , Estresse Oxidativo , Rhododendron/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA