Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(4): 103342, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39331499

RESUMO

Appendage regeneration occurs within the opaque exoskeleton in arthropods, making it challenging to visualize the regenerative processes dynamically. In this protocol, we present a strategy to scan and capture the high-resolution details of microstructural tissues at certain regeneration points through micro-computed tomography (micro-CT). We describe steps for tissue preparation, fixation, critical point drying, micro-CT scanning, and 3D visualization. This approach promises significant utility in the field of regeneration, particularly in studies involving arthropods such as insects and crustaceans. For complete details on the use and execution of this protocol, please refer to Ren et al.1.

2.
Cell Regen ; 12(1): 9, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859631

RESUMO

Regeneration, as a fascinating scientific field, refers to the ability of animals replacing lost tissue or body parts. Many metazoan organisms have been reported with the regeneration phenomena, but showing evolutionarily variable abilities. As the most diverse metazoan taxon, hundreds of insects show strong appendage regeneration ability. The regeneration process and ability are dependent on many factors, including macroscopic physiological conditions and microscopic molecular mechanisms. This article reviews research progress on the physiological conditions and internal underlying mechanisms controlling appendage regeneration in insects.

3.
Nat Ecol Evol ; 6(8): 1180-1190, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35788705

RESUMO

Sex differentiation and hormones are essential for the development of sexual signals in animals, and the regulation of sexual signals involves complex gene networks. However, it is unknown whether a core gene is able to connect the upstream regulators for controlling sexual signal outputs and behavioural consequences. Here, we identify a single gene that integrates both sex differentiation and hormone signalling with sexual attractiveness in an insect model. CYP4PC1 in the German cockroach, Blattella germanica, controls the rate-limiting step in producing female-specific contact sex pheromone (CSP) that stimulates male courtship. As revealed by behavioural, biochemical, molecular, genetic and bioinformatic approaches, in sexually mature females, CYP4PC1 expression and CSP production are coordinately induced by sex differentiation genes and juvenile hormone (JH) signalling. In adult males, direct inhibition of CYP4PC1 expression by doublesexM binding in gene promoter and lack of the gonadotropic hormone JH prevent CSP production, thus avoiding male-male attraction. By manipulating the upstream regulators, we show that wild-type males prefer to court cockroaches with higher CYP4PC1 expression and CSP production in a dose-dependent manner, regardless of their sex. These findings shed light on how sex-specific and high sexual attractiveness is conferred in insects.


Assuntos
Blattellidae , Hormônios Juvenis , Animais , Blattellidae/genética , Feminino , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Hormônios Juvenis/farmacologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA