Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 429: 128318, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35086038

RESUMO

Pisolithus sp. 1 (P sp. 1) is an ectomycorrhizal fungus (EMF) with a strong Cr(VI) tolerance and reduction ability. The noninvasive microttest technique (NMT), real-time quantitative PCR (qRT-PCR), and the three-dimensional excitation-emission matrix (3D-EEM) were used to deeply explore the physiological mechanism of the P sp. 1 response to Cr(VI) and investigate the relationship between Cr(VI) reduction and denitrification in P sp. Cr(VI) induced the strongest elevations in nitrate reductase (NR) activity and NO production in the mycelia after treatment with Cr(VI) for 48 h under aerobic conditions. The NR inhibitor tungstate significantly inhibited Cr(VI) reduction, proton efflux and the expression of the NR gene (niaD) and NiR gene (niiA). In addition, NO was generated via NR-regulated denitrification. Combined treatments with Cr(VI) and the NO scavenger carboxy-PTIO (cPTIO) significantly increased O2-, H2O2 and MDA contents and reduced SDH, CAT, GSH, GR and GSNOR activity. Therefore, the NR-driven aerobic denitrifying process requires protons, and the generated NO reduces the oxidative stress effect of Cr(VI) on mycelia by reducing ROS accumulation and lipid peroxidation, enhancing mycelial and CAT activity, and promoting GSH recycling and regeneration. Psp.1 can also secrete humic acid-like and protein-like substances to combine with Cr(III) in a culture system.


Assuntos
Basidiomycota , Micorrizas , Basidiomycota/metabolismo , Cromo/metabolismo , Peróxido de Hidrogênio/metabolismo , Micorrizas/metabolismo , Oxirredução
2.
Bull Environ Contam Toxicol ; 108(2): 372-378, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34515821

RESUMO

Different foliar barrier agents (FBA) were used by foliar spraying in first season field and pot experiments to compare their effects on Cadmium (Cd) reduction in wheat grains. The best two FBA (50 µM SNP and 2 mM Na2EDTA) can significantly reduce Cd concentration in wheat grains, and the filling period was the most effective period for FBA application. Compared with the control (H2O), foliar spraying 50 µM SNP or 2 mM Na2EDTA inhibited the moving of Cd from the lower tissue to upper tissue in stem and also significantly reduced the Cd accumulation in grains. Furthermore, compared with normal wheat variety (AK58), foliar spraying 50 µmol SNP or 2 mM Na2EDTA as the best two FBA significantly reduced Cd concentration in shoots of Cd low accumulation varieties (HZB and HJBY), which can be used for the safe production of wheat in Cd-contaminated farmlands.


Assuntos
Poluentes do Solo , Triticum , Antioxidantes , Cádmio/análise , Cádmio/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Sci Total Environ ; 696: 133729, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31450052

RESUMO

The effect of earthworms on the immobilization of heavy metals by biochar was investigated using 4-week soil pot experiments. Our results showed that both sludge and rice husk biochars applied to Cd, Pb and Zn contaminated soils significantly reduced the bioavailability of those heavy metals in soils, and their concentrations in soil pore water. The Cd and Pb concentrations in pakchoi shoots were decreased by 10.8%-11.7% and 21.5%-26.5%, respectively, in biochar treatments alone. Biochar and earthworm treatments, alone or in combination, can significantly increase pakchoi growth. However, compared with biochar-treated alone, applying earthworms into pots with biochar treatments significantly reduced soil pH by 0.1-0.19 units, increased the Cd, Pb and Zn concentrations in soil pore water, their bioavailability and total uptake in shoots. Additionally, earthworms weaken the immobilization effect of biochar on heavy metals. The results of principal component analysis and correlation analysis showed that earthworm treatment was the main cause of soil pH reduction, and soil pH was significantly negatively correlated with the bioavailable Cd, Pb and Zn concentrations in the soil. Furthermore, the effect of the earthworm digestive system (casts) on bioavailable Cd, Pb and Zn concentrations could not explain their changes in the soil. In addition, the application of biochar had no significant effect on the survival and heavy metal enrichment of earthworm. Therefore, the effect of earthworms must be considered in the process of Cd, Pb and Zn contaminated farmland soil remediation using biochar.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Oligoquetos/fisiologia , Poluentes do Solo/química , Animais , Carvão Vegetal , Metais Pesados/análise , Solo , Poluentes do Solo/análise
4.
Chemosphere ; 215: 115-123, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316153

RESUMO

Whether the huge external hyphal system of ectomycorrhizae that promotes host plants' acquisition of water and nutrients can selectively inhibit their transport of heavy metals at the same time remains unclear. In this experiment, we designed and conducted two types of soil-pot test to clarify the effects of EMF on the absorption and transport of copper (Cu) and cadmium (Cd) by host Pinus thunbergii seedlings. In the root-bag test, external hyphae took the initiative into the Cu/Cd-contaminated bulk soil, absorb and transport Cu and Cd to the rhizosphere soils and further transport it to the shoots of the host plants. Inoculation with EMF also promoted the uptake of nutrients by host plants, thereby increasing their biomass and improving Cu/Cd tolerance compared with non-inoculated plants. Inoculation with EMF species with higher Cu or Cd tolerance generated more phytostabilization and phytoextraction of Cu or Cd by host plants. In a short-term exposure test, inoculation with EMF accelerated the absorption of Cu and Cd by P. thunbergii within 12 h of Cu or Cd irrigation. Therefore, we concluded that EMF do not act as a barrier inhibiting the absorption of heavy metals by host plants, but rather promote this absorption. Improving the plant's nutritional status and promoting growth, diluting heavy metal concentrations, thereby reducing the toxic effects of heavy metals on host plants. These results provide the theoretical basis for the application of EMF in plant-microbial combinations for the phytostabilization and phytoextraction of heavy metal-contaminated soils.


Assuntos
Basidiomycota/fisiologia , Tolerância a Medicamentos , Metais Pesados/toxicidade , Micorrizas/metabolismo , Pinus/metabolismo , Poluentes do Solo/toxicidade , Transporte Biológico , Biomassa , Recuperação e Remediação Ambiental , Micorrizas/efeitos dos fármacos , Pinus/efeitos dos fármacos , Pinus/microbiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA