Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Remote Sens Environ ; 2382020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863440

RESUMO

Tidal flats (non-vegetated area), along with coastal vegetation area, constitute the coastal wetlands (intertidal zone) between high and low water lines, and play an important role in wildlife, biodiversity and biogeochemical cycles. However, accurate annual maps of coastal tidal flats over the last few decades are unavailable and their spatio-temporal changes in China are unknown. In this study, we analyzed all the available Landsat TM/ETM+/OLI imagery (~ 44,528 images) using the Google Earth Engine (GEE) cloud computing platform and a robust decision tree algorithm to generate annual frequency maps of open surface water body and vegetation to produce annual maps of coastal tidal flats in eastern China from 1986 to 2016 at 30-m spatial resolution. The resulting map of coastal tidal flats in 2016 was evaluated using very high-resolution images available in Google Earth. The total area of coastal tidal flats in China in 2016 was about 731,170 ha, mostly distributed in the provinces around Yellow River Delta and Pearl River Delta. The interannual dynamics of coastal tidal flats area in China over the last three decades can be divided into three periods: a stable period during 1986-1992, an increasing period during 1993-2001 and a decreasing period during 2002-2016. The resulting annual coastal tidal flats maps could be used to support sustainable coastal zone management policies that preserve coastal ecosystem services and biodiversity in China.

2.
Nat Commun ; 11(1): 3471, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651358

RESUMO

Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and terrestrial water storage (TWS) in China are critical for sustainable management of water resources but remain very limited. Here we report annual maps of surface water bodies in China during 1989-2016 at 30m spatial resolution. We find that SWA decreases in water-poor northern China but increases in water-rich southern China during 1989-2016. Our results also reveal the spatial-temporal divergence and consistency between TWS and SWA during 2002-2016. In North China, extensive and continued losses of TWS, together with small to moderate changes of SWA, indicate long-term water stress in the region. Approximately 569 million people live in those areas with deceasing SWA or TWS trends in 2015. Our data set and the findings from this study could be used to support the government and the public to address increasing challenges of water resources and security in China.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Recursos Hídricos , Algoritmos , China , Clima , Ecologia , Água Doce , Geografia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA