Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(2): e2204864, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394082

RESUMO

Electrochemical activation strategy is very effective to improve the intrinsic catalytic activity of metal phosphate toward the sluggish oxygen evolution reaction (OER) for water electrolysis. However, it is still challenging to operando trace the activated reconstruction and corresponding electrocatalytic dynamic mechanisms. Herein, a constant voltage activation strategy is adopted to in situ activate Ni2 P4 O12 , in which the break of NiONi bond and dissolution of PO4 3- groups could optimize the lattice oxygen, thus reconstructing an irreversible amorphous Ni(OH)2 layer with a thickness of 1.5-3.5 nm on the surface of Ni2 P4 O12 . The heterostructure electrocatalyst can afford an excellent OER activity in alkaline media with an overpotential of 216.5 mV at 27.0 mA cm-2 . Operando X-ray absorption fine structure spectroscopy analysis and density functional theory simulations indicate that the heterostructure follows a nonconcerted proton-electron transfer mechanism for OER. This activation strategy demonstrates universality and can be used to the surface reconstruction of other metal phosphates.

2.
Nat Commun ; 13(1): 2565, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538081

RESUMO

Epitaxial growth is of significant importance over the past decades, given it has been the key process of modern technology for delivering high-quality thin films. For conventional heteroepitaxy, the selection of proper single crystal substrates not only facilitates the integration of different materials but also fulfills interface and strain engineering upon a wide spectrum of functionalities. Nevertheless, the lattice structure, regularity and crystalline orientation are determined once a specific substrate is chosen. Here, we reveal the growth of twisted oxide lateral homostructure with controllable in-plane conjunctions. The twisted lateral homostructures with atomically sharp interfaces can be composed of epitaxial "blocks" with different crystalline orientations, ferroic orders and phases. We further demonstrate that this approach is universal for fabricating various complex systems, in which the unconventional physical properties can be artificially manipulated. Our results establish an efficient pathway towards twisted lateral homostructures, adding additional degrees of freedom to design epitaxial films.

3.
Micromachines (Basel) ; 12(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34945286

RESUMO

Hafnia-based ferroelectric (FE) thin films have received extensive attention in both academia and industry, benefitting from their outstanding scalability and excellent CMOS compatibility. Hafnia-based FE capacitors in particular have the potential to be used in dynamic random-access memory (DRAM) applications. Obtaining fine structure characterization at ultra-high spatial resolution is helpful for device performance optimization. Hence, sample preparation by the focused ion beam (FIB) system is an essential step, especially for in situ biasing experiments in a transmission electron microscope (TEM). In this work, we put forward three tips to improve the success rate of in situ biasing experiments: depositing a carbon protective layer to position the interface, welding the sample on the top of the Cu column of the TEM grid, and cutting the sample into a comb-like shape. By these means, in situ biasing of the FE capacitor was realized in TEM, and electric-field-induced tetragonal (t-) to monoclinic (m-) structure transitions in Hf0.5Zr0.5O2 FE film were observed. The improvement of FIB sample preparation technology can greatly enhance the quality of in situ biasing TEM samples, improve the success rate, and extend from capacitor sample preparation to other types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...