Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202300704, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988016

RESUMO

Despite the widespread success in the functionalization of C(sp2 )-H bonds, the deliberate functionalization of C(sp3 )-H bonds in a highly site- and stereoselective manner remains a longstanding challenge. Herein, we report an iridium/aluminum cooperative catalytic system that enables the ß-selective C-H borylation of saturated cyclic amines and lactams. Furthermore, we have accomplished an enantioselective variant using binaphthol-derived chiral aluminum catalysts to forge C-B bonds with high levels of stereocontrol. Computational studies suggest that the formation of a Lewis pair with the substrates is crucial to lower the energy of the transition state for the rate-determining reductive elimination step.

2.
Chem Sci ; 13(45): 13617-13622, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507178

RESUMO

ortho-Alkynyl quinone methides are well-known four-atom synthons for direct [4 + n] cycloaddition in constructing useful oxa-heterocyclic compounds owing to their high reactivity as well as the thermodynamically favored aromatization nature of this process. Herein we report an operationally simple and eco-friendly protocol for the modular and regioselective access of (E)-4-(vinyl or aryl or alkynyl)iminochromenes from propargylamines and S-methylated ß-ketothioamides in the presence of FeCl3, and particularly under undried acetonitrile and air atmosphere conditions. This method exhibits a broad substrate scope and displays nice functional group compatibility, thus providing an efficient access of 3,4-disubstituted iminochromenes.

3.
J Org Chem ; 87(23): 16039-16046, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379013

RESUMO

Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.


Assuntos
Fluorbenzenos , Paládio , Paládio/química , Modelos Moleculares , Ligantes
4.
Org Lett ; 24(37): 6805-6809, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36098713

RESUMO

A redox-neutral benzylic C-O cyclization under beneficial transition-metal-free conditions is reported. Key to the success of this process is the utilization of the Tf anion as the leaving group for achieving the redox-neutral transformation. This protocol delivers a series of captivating helical compounds having various functionality in good-to-excellent yields. It is particularly noteworthy that sterically hindered helical compounds are conformationally stable. In addition to simple helical chromenes, the bihelical multiple-ring systems which are potentially useful in material chemistry are also easily attained by employing this method. DFT calculation revealed that quinone intermediate is the key species, among four possible mechanisms, for accomplishing the desired cyclization via an oxa-6π-electrocyclization pathway.

5.
J Am Chem Soc ; 144(32): 14864-14873, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921609

RESUMO

Biaryl phosphines bearing C(Ar)-C(Ar) axial chirality are commonly known and have been successfully applied in many asymmetric catalyses. Nevertheless, the development of a chiral ligand having an axially chiral C(Ar)-N backbone remains elusive due to its undesirable less restricted rotational barrier. In fact, it is highly attractive to overcome this challenge in ligand development as the incorporation of an N-donor component at the chiral axis is more favorable toward the transient metal coordination, and thus, a better outcome of stereocommunication is anticipated to the approaching substrates. Herein, we present a rational design of a new collection of chiral phosphines featuring a C-N axial chirality and their applications in enantioselective Suzuki-Miyaura cross-coupling for accessing highly steric hindered tetra-ortho-substituted biaryls (26 examples up to 98:2 er). It is worth noting that the embodied carbazolyl framework is crucial to succeed the reaction, by the fruitful steric relief of bulky substrate coordination and transmetalation via a fleeting Pd-N jumping to Pd-π fashion. DFT calculation reveals an interesting Pd-arene-walking characteristic across the carbazolyl plane for attaining a lower energy-preferred route in a catalytic cycle. The theoretical study successfully predicts the stereooutcome and matches the enantioselectivity with the experimental results.


Assuntos
Fosfinas , Catálise , Ligantes , Estereoisomerismo
6.
Small ; 17(20): e2100762, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33817965

RESUMO

In this work, by combining the superiority of polyoxometalates (POMs) and catalytic single-metal site Co of metalloporphyrin, a series of mixed-valence POM-based metal-organic frameworks (MOFs) composites is synthesized by a post-modification method. The electron-transfer property of POM@PCN-222(Co) composite is significantly enhanced owing to the directional electron-transfer from POM to single-metal site Co in PCN-222(Co). In particular, H-POM@PCN-222(Co) gives a high Faradaic efficiency of 96.2% for electroreduction of CO2 into CO and good stability over 10 h. DFT calculations confirm that the directional electron transfer, which accelerates the multi-electron transfer from the electrode to active single-metal site Co, enriches the electron density of the Co center, and ultimately reduces the energy of the rate-determining step, thus increasing the catalytic activity of CO2 reduction reaction (CO2 RR). This work therefore suggests some new insight for the design of efficient electrocatalysts for CO2 RR.

7.
ACS Cent Sci ; 7(1): 175-182, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33532578

RESUMO

The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.

8.
J Am Chem Soc ; 142(39): 16732-16747, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32894944

RESUMO

Methane borylation catalyzed by Cp*M(Bpin)n (M = Ru or Rh; HBpin = pinacolborane; n = 2 or 3) and (TMPhen)Ir(Bpin)3 (TMPhen = 3,4,7,8-tetramethyl-1,10-phenanthroline) was investigated by DFT in comparison with cyclohexane borylation. Because Ru-catalyzed borylation has not been theoretically investigated yet, its reaction mechanism was first elucidated; Cp*Ru(Bpin)3 1-Ru is an active species, and Cp*Ru(Bpin)3(H)(CH3) 4-Ru is a key intermediate. In 4-Ru, the Ru is understood to have an ambiguous oxidation state between +IV and +VI because it has a H··Bpin bonding interaction with a bond order of about 0.5. Methane borylation occurs through oxidative addition of methane C-H bond followed by reductive elimination of borylmethane in all of these catalysts. The catalytic activity for methane borylation increases following the order Cp*Ru(Bpin)3 < (TMPhen)Ir(Bpin)3 < Cp*Rh(Bpin)2. Cyclohexane borylation occurs in the same mechanism except for the presence of isomerization of a key intermediate. Chemoselectivity of methane over cyclohexane increases following the order Ir < Ru < Rh. In all of these catalysts, the rate-determining step (RDS) of cyclohexane borylation needs a larger ΔG°‡ than the RDS of methane borylation because the more bulky cyclohexyl group induces larger steric repulsion with the ligand than methyl. One reason for the worse chemoselectivity of the Ir catalyst is its less congested transition state of the reductive elimination of borylcyclohexane. Herein, use of a strongly electron-donating ligand consisting of pyridine and N-heterocyclic carbene with bulky substituents is computationally proposed as a good ligand for the Ir catalyst; actually, the Ir complex of this ligand is calculated to be more active and more chemoselective than Cp*Rh(Bpin)2 for methane borylation.

9.
Chem Commun (Camb) ; 55(63): 9291-9294, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339130

RESUMO

N-Heterocyclic carbene (NHC) ligands effective for the cross-coupling of nitroarenes were identified. A rational design of the NHC ligand structures enabled significant reduction of catalyst loadings compared with the previous system employing BrettPhos as a phosphine ligand. Experimental and theoretical studies to compare these ligands gave some insights into high activity of the newly developed NHC ligands.

10.
J Mol Model ; 25(8): 212, 2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31280370

RESUMO

In the present study, DFT calculations are carried out on domestically designed 7-methyl-2-phenyl-5'H-spiro[chromene-4,2'-chromeno[3,4-e][1,3]oxazin]-5'-one spiropyran and merocyanine derivatives to recognize alkali and alkaline earth metal ions. Detection of these metal ions can be attained by exploiting the variation of the second-order nonlinear optical properties. Merocyanine forms of these derivatives exhibit the ability to complex with different metal ions (Li+, Na+, K+, and Ca2+), which is associated with large contrasts in the hyper-Rayleigh scattering (HRS) response as a function of metal size and charge. Interestingly, in this study, Mero-Li+ shows significant nonlinear optical response with dynamic HRS first hyperpolarizability amounting to 7607 a.u., which is about nine times higher than its corresponding spiro form (846 a.u.) at the CAM-B3LYP/6-311G* level of theory. The present investigation clarifies the effect of metal nature on the enhancement of the first hyperpolarizability between the closed and open forms of the studied coumarin derivatives. Graphical abstract The coumarin-based compound 3 demonstrate the higher second-order NLO responses as a function of metal cation size and charges. Complexation of smaller alkali metal ions leads to the formation of stronger metal-ligand bonds, larger geometrical relaxations and significant enhancement of the HRS first hyperpolarizabilities. This present investigation elucidates the effect of metal nature on the enhancement of the first hyperpolarizability between the closed and open forms of studied coumarin derivatives.

11.
Chemphyschem ; 20(14): 1879-1884, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31124269

RESUMO

The nature of the 2e/12c bond and its conversion to a carbon-carbon single bond in phenalenyl dimers have prompted a great deal of interests recently. In this work, we theoretically investigated a series of π-stacking phenalenyl derivatives with 2e/12c bonding character by density functional theory (DFT) calculations to elucidate origin of this unusual bond conversion. Results show that bond-conversion of the phenalenyl dimer easily occurs at room-temperature both dynamically and thermodynamically. However, bond-conversion of hetero π-stacking adducts, in which the two center carbon atoms were substituted by boron and nitrogen atoms, respectively, is much more difficult, because the 2e/12c bond is stabilized by its charge transfer character. Consequently, the bond-conversion is an endothermic process, albeit with a low conversion barrier. Interestingly, Lewis acid-base interactions would be induced by substitution of the center nitrogen atom to phosphorus atom. The 2e/12c bond is further stabilized by 5.9 kcal mol-1 and its conversion is also thermodynamically unfavorable.

12.
J Am Chem Soc ; 141(25): 9854-9866, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31124356

RESUMO

Iridium-catalyzed C-H borylation of THF was theoretically investigated as example of sp3 C-H functionalization. DFT computations show that ß-regioselective borylation occurs more easily than does α-regioselective, as reported experimentally, through oxidative addition of C-H bond to iridium(III) species and reductive elimination of B-C bond. The reductive elimination is both a rate-determining step and a regioselectivity-determining step. The lower energy transition state (TS) of the reductive elimination of ß-boryloxolane arises from the Ir···(ß-oxolanyl) interaction at TS being stronger than the Ir···(α-oxolanyl) one. The Ir···(ß-oxolanyl) interaction being stronger than the Ir···(α-oxolanyl) one is a result of the valence orbital energy of the α-oxolanyl group being higher than that of the ß-oxolanyl group due to antibonding overlap of the valence orbital with O 2p orbital, where SOMO of oxolanyl radical is taken as valence orbital hereinafter. Reactivity of substrate decreases following the order primary (ß) C-H of ethyl ether > primary C-H of n-pentane ∼ secondary (ß) C-H of THF > secondary C-H of cyclopentane > secondary (α) C-H of THF ∼ secondary C-H of n-pentane > secondary (α) C-H of ethyl ether. The primary C-H bond is more reactive than the secondary one because of its smaller steric repulsion and lower energy valence orbital of the primary alkyl group. The ß-C-H bond of THF is more reactive than the secondary C-H bond of cyclopentane because of valence orbital energy of the ß-oxolanyl group being lower than that of the cyclopentyl group. Both steric and electronic factors are important for determining reactivity of substrate. Bidentate ligand consisting of pyridine and N-heterocyclic carbene is predicted to be better than 3,4,7,8-tetramethyl-1,10-phenanthroline used experimentally.

13.
Carbohydr Polym ; 209: 258-265, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732807

RESUMO

The present work describes the comparison of the abilities of graphene-cyclodextrin conjugates to enhance the electrochemical performance of four tyramine-related compounds. First, cyclodextrin (CD)-modified graphene conjugates were synthesized via the amine-epoxy reaction between graphene oxide (GO) and 6-deoxy-6-ethylenediamino-ß-CD, followed by l-ascorbic acid reduction. The resulting conjugates were characterized using UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Subsequently, for the comparative study, glass carbon electrode electrochemical sensors modified with these conjugates were prepared to detect four structurally similar analytes (tyramine, l-tyrosine, dopamine and levodopa). The sensor sensitivities of the modified electrodes were markedly higher than that of the bare electrode. Based on the results of the comparative study, several crucial factors for improving the performance of the electrodes were proposed, including the binding affinity and the binding orientation of CD toward analytes. The conclusions drawn in this study could provide theoretical foundation for the design and optimization of versatile electrochemical platforms with excellent properties.

14.
Chemistry ; 24(63): 16919-16924, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30211451

RESUMO

Stable phenalenyl (PLY) radical π-dimers still play an important role for new multifunctional materials owing to their intriguing molecular structure and unusual pancake π-π bonding mode. Herein, we design a new biphenalenyl biradicaloid (1) consisting of two PLYs and one benzene ring linkage tethered by single bonds, which presents an open-shell character. Further, three π-dimers (a1, b1, and c1) combined with 1 and conventional biphenalenyl biradicaloid (a, b, and c), which are capable of forming two staggered PLY dimers, exhibiting a short interlayer distance between the monomers. Interestingly, the analysis of the frontier molecular orbital reveals that two bonding orbitals, namely, the two highest occupied molecular orbitals (HOMO and HOMO-1) are doubly occupied. The results reveal that three π-dimers display two parallel pancake bonds. Moreover, they have small diradical and tetraradical characters, large interaction energies, and strong aromaticity, which indicate the stability of these π-dimers. The present work creates a new class of strong pancake bonding and might be utilized in devising an array of materials.

16.
J Am Chem Soc ; 139(28): 9423-9426, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678486

RESUMO

Synthesis of biaryls via the Suzuki-Miyaura coupling (SMC) reaction using nitroarenes as an electrophilic coupling partners is described. Mechanistic studies have revealed that the catalytic cycle of this reaction is initiated by the cleavage of the aryl-nitro (Ar-NO2) bond by palladium, which represents an unprecedented elemental reaction.

17.
Phys Chem Chem Phys ; 18(42): 29041-29044, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27734038

RESUMO

A series of diradical π-dimers 2 with interesting pancake-shaped 2e/24c π-π bonding character were designed and investigated based on the famous phenalenyl (PLY) π-dimer with 2e/12c π-π bonding character. The position of stronger interaction between two layers of radicals was found by the Wiberg bond index (WBI) maximum component. Further, the different contributions of the interaction energy were analyzed quantitatively by energy decomposition analysis (EDA). Among these new diradical π-dimers, 2180 has the smallest layer distance and the largest interaction between two layers of radicals. The unusual PLY analogues can provide new insights into the unique features of two-electron/multicenter (2e/mc) π-π bonding.

18.
J Chem Phys ; 145(5): 054304, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27497558

RESUMO

An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

19.
Phys Chem Chem Phys ; 18(20): 13954-9, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27152376

RESUMO

Carbon-boron-nitride heteronanotubes (BNCNT) have attracted a lot of attention because of their adjustable properties and potential applications in many fields. In this work, a series of CA, PA and HA armchair BNCNT models were designed to explore their nonlinear optical (NLO) properties and provide physical insight into the structure-property relationships; CA, PA and HA represent the models that are obtained by doping the carbon segment into pristine boron nitride nanotube (BNNT) fragments circularly around the tube axis, parallel to the tube axis and helically to the tube axis, respectively. Results show that the first hyperpolarizability (ß0) of an armchair BNCNT model is dramatically dependent on the connecting patterns of carbon with the boron nitride fragment. Significantly, the ß0 value of PA-6 is 2.00 × 10(4) au, which is almost two orders of magnitude larger than those (6.07 × 10(2) and 1.55 × 10(2) au) of HA-6 and CA-6. In addition, the ß0 values of PA and CA models increase with the increase in carbon proportion, whereas those of HA models show a different tendency. Further investigations on transition properties show that the curved charge transfer from N-connecting carbon atoms to B-connecting carbon atoms of PA models is essentially the origin of the big difference among these models. This new knowledge about armchair BNCNTs may provide important information for the design and preparation of advanced NLO nano-materials.

20.
Dalton Trans ; 45(6): 2656-65, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26740006

RESUMO

All-metal electride molecules, CuAg@Ca7M (M = Be, Mg and Ca), have been designed and researched in theory for the first time. In these molecules, a pull-push electron relay occurs. Unusually, the all-metal polyanions of fourfold negatively charged [Cu-Ag-Be/Mg](4-) and [Cu-Ag](4-) with 4 extra electrons gained from Ca atoms push the remaining valence electrons of the Ca atoms forming the multi-excess electrons (Ne = 10/12). Therefore, these molecules can be described as salt-like [(Ca(2+))7(CuAgM)(4-)] + 10e(-) (M = Be and Mg) and [(Ca(2+))8(CuAg)(4-)] + 12e(-). In these salt-like molecules, there are extraordinary covalent bonding modes, which include 2c-2e/3c-2e σ-bonding in the polyanions and the Ca(2+) cations sharing the diffuse multi-excess electrons. For an intriguing nonlinear optical (NLO) response, these all-metal electride molecules display large electronic first hyperpolarizabilities (ß0), thus a new class of NLO molecules, all-metal electride NLO molecules, emerge. Moreover, it is also found that manipulating the atomic number and position of M is a new strategy to enhance ß0. As a result, CuAg@Ca7Mg(1) exhibits a considerable ß0 (1.43 × 10(4) au), which is 16 times the ß0 sum of two isolated CuAg and Ca7Mg(1) subunits, and this deeply reveals the fundamental origin of the considerable ß0, namely, the multi-excess electrons generated by the subunit interaction. These all-metal electride molecules have the infrared (IR) transparent region of 1.3-6 µm, and hence are new IR NLO molecules. In addition the electronic contribution, ß0, the large effects of vibrations on the static first hyperpolarizabilities of these all-metal electride molecules are also estimated. Thus, this study opens the new research field of all-metal electride IR NLO molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...