Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
PLoS One ; 19(7): e0300176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959209

RESUMO

PURPOSE: To determine the effect of different combinations of different exercise modalities with different training cycles on the improvement of quality of life and pain symptoms in breast cancer patients. METHODS: The databases PubMed, Web of Science, Embase, and Scopus were searched through a computer network with a search deadline of 23 August 2023. Two researchers independently screened the literature, extracted data and performed methodological quality assessment of the included literature, and then performed the corresponding statistical analyses and graphing using stata17.0. RESULTS: Thirty-six randomized control trial (RCT) studies involving 3003 participants and seven exercise modalities were included. Most of the exercise modalities improved patients' quality of life compared to usual care, with long-term aerobic combined with resistance exercise [SMD = 0.83,95% CI = 0.34,1.33,p = 0.001] and YOGA [SMD = 0.61,95% CI = 0.06,1.16,p = 0.029] treatments having a significant effect. For pain and fatigue-related outcome indicators, the treatment effect was not significant for all exercise modalities included in the analysis compared to the control group, but tended to be beneficial for patients. CONCLUSION: Long-term aerobic combined with resistance exercise was the most effective in improving quality of life and fatigue status in breast cancer patients, and aerobic exercise was more effective in improving pain symptoms in breast cancer patients.


Assuntos
Neoplasias da Mama , Terapia por Exercício , Metanálise em Rede , Qualidade de Vida , Humanos , Neoplasias da Mama/psicologia , Neoplasias da Mama/complicações , Neoplasias da Mama/terapia , Feminino , Terapia por Exercício/métodos , Exercício Físico , Ensaios Clínicos Controlados Aleatórios como Assunto , Dor , Treinamento Resistido , Dor do Câncer/terapia , Dor do Câncer/psicologia
2.
Angew Chem Int Ed Engl ; : e202408857, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993074

RESUMO

Owing to the significant latent heat generated at constant temperatures, phase change fibers (PCFs) have recently received much attention in the field of wearable thermal management. However, the phase change materials involved in the existing PCFs still experience a solid-liquid transition process, severely restricting their practicality as wearable thermal management materials. Herein, we, for the first time, developed intrinsically flexible PCFs (polyethylene glycol/4,4'-methylenebis(cyclohexyl isocyanate) fibers, PMFs) through polycondensation and wet-spinning process, exhibiting an inherent solid-solid phase transition property, adjustable phase transition behaviors, and outstanding knittability. The PMFs also present superior mechanical strength (28 MPa), washability (> 100 cycles), thermal cycling stability (> 2000 cycles), facile dyeability, and heat-induced recoverability, all of which are highly significant for practical wearable applications. Additionally, the PMFs can be easily recycled by directly dissolving them in solvents for reprocessing, revealing promising applications as sustainable materials for thermal management. Most importantly, the applicability of the PMFs was demonstrated by knitting them into permeable fabrics, which exhibit considerably improved thermal management performance compared with the cotton fabric. The PMFs offer great potential for intelligent thermal regulation in smart textiles and wearable electronics.

3.
Fundam Res ; 4(2): 307-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38933500

RESUMO

Two-dimensional MXenes are key high-capacitance electrode materials for micro-supercapacitors (MSCs) catering to integrated microsystems. However, the narrow electrochemical voltage windows of conventional aqueous electrolytes (≤ 1.23 V) and symmetric MXene MSCs (typically ≤ 0.6 V) substantially limit their output voltage and energy density. Highly concentrated aqueous electrolytes exhibit lower water molecule activity, which inhibits water splitting and consequently widens the operating voltage window. Herein, we report ultrahigh-voltage aqueous planar asymmetric MSCs (AMSCs) based on a highly concentrated LiCl-gel quasi-solid-state electrolyte with MXene (Ti3C2T x ) as the negative electrode and MnO2 nanosheets as the positive electrode (MXene//MnO2-AMSCs). The MXene//MnO2-AMSCs exhibit a high voltage of up to 2.4 V, attaining an ultrahigh volumetric energy density of 53 mWh cm-3. Furthermore, the in-plane geometry and the quasi-solid-state electrolyte enabled excellent mechanical flexibility and performance uniformity in the serially/parallel connected packs of our AMSCs. Notably, the MXene//MnO2-AMSC-based integrated microsystem, in conjunction with solar cells and consumer electronics, could efficiently realize simultaneous energy harvesting, storage, and conversion. The findings of this study provide insights for constructing high-voltage aqueous MXene-based AMSCs as safe and self-sufficient micropower sources in smart integrated microsystems.

4.
Small ; : e2401384, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940385

RESUMO

Understanding the reconstruction mechanism to rationally design cost-effective electrocatalysts for oxygen evolution reaction (OER) is still challenging. Herein, a defect-rich NiMoO4 precatalyst is used to explore its OER activity and reconstruction mechanism. In situ generated oxygen vacancies, distorted lattices, and edge dislocations expedite the deep reconstruction of NiMoO4 to form polycrystalline Ni (oxy)hydroxides for alkaline oxygen evolution. It only needs ≈230 and ≈285 mV to reach 10 and 100 mA cm-2, respectively. The reconstruction boosted by the redox of Ni is confirmed experimentally by sectionalized cyclic voltammetry activations at different specified potential ranges combined with ex situ characterization techniques. Subsequently, the reconstruction route is presented based on the acid-base electronic theory. Accordingly, the dominant contribution of the adsorbate evolution mechanism to reconstruction during oxygen evolution is revealed. This work develops a novel route to synthesize defect-rich materials and provides new tactics to investigate the reconstruction.

5.
Sci Bull (Beijing) ; 69(13): 2071-2079, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734585

RESUMO

High-voltage and fast-charging LiCoO2 (LCO) is key to high-energy/power-density Li-ion batteries. However, unstable surface structure and unfavorable electronic/ionic conductivity severely hinder its high-voltage fast-charging cyclability. Here, we construct a Li/Na-B-Mg-Si-O-F-rich mixed ion/electron interface network on the 4.65 V LCO electrode to enhance its rate capability and long-term cycling stability. Specifically, the resulting artificial hybrid conductive network enhances the reversible conversion of Co3+/4+/O2-/n- redox by the interfacial ion-electron cooperation and suppresses interface side reactions, inducing an ultrathin yet compact cathode electrolyte interphase. Simultaneously, the derived near-surface Na+/Mg2+/Si4+-pillared local intercalation structure greatly promotes the Li+ diffusion around the 4.55 V phase transition and stabilizes the cathode interface. Finally, excellent 3 C (1 C = 274 mA g-1) fast charging performance is demonstrated with 73.8% capacity retention over 1000 cycles. Our findings shed new insights to the fundamental mechanism of interfacial ion/electron synergy in stabilizing and enhancing fast-charging cathode materials.

6.
Nature ; 628(8007): 313-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570689

RESUMO

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

7.
Chem Sci ; 15(15): 5451-5481, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638219

RESUMO

In the era of the Internet of Things and wearable electronics, 3D-printed micro-batteries with miniaturization, aesthetic diversity and high aspect ratio, have emerged as a recent innovation that solves the problems of limited design diversity, poor flexibility and low mass loading of materials associated with traditional power sources restricted by the slurry-casting method. Thus, a comprehensive understanding of the rational design of 3D-printed materials, inks, methods, configurations and systems is critical to optimize the electrochemical performance of customizable 3D-printed micro-batteries. In this review, we offer a key overview and systematic discussion on 3D-printed micro-batteries, emphasizing the close relationship between printable materials and printing technology, as well as the reasonable design of inks. Initially, we compare the distinct characteristics of various printing technologies, and subsequently emphatically expound the printable components of micro-batteries and general approaches to prepare printable inks. After that, we focus on the outstanding role played by 3D printing design in the device architecture, battery configuration, performance improvement, and system integration. Finally, the future challenges and perspectives concerning high-performance 3D-printed micro-batteries are adequately highlighted and discussed. This comprehensive discussion aims at providing a blueprint for the design and construction of next-generation 3D-printed micro-batteries.

8.
Adv Mater ; : e2401454, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685794

RESUMO

Single atom catalysts (SACs) are atomic-level-engineered materials with high intrinsic activity. Catalytic centers of SACs are typically the transition metal (TM)-nonmetal coordination sites, while the functions of coexisting non-TM-bonded functionalities are usually overlooked in catalysis. Herein, the scalable preparation of carbon-supported cobalt-anchored SACs (CoCN) with controlled Co─N sites and free functional N species is reported. The role of metal- and nonmetal-bonded functionalities in the SACs for peroxymonosulfate (PMS)-driven Fenton-like reactions is first systematically studied, revealing their contribution to performance improvement and pathway steering. Experiments and computations demonstrate that the Co─N3C coordination plays a vital role in the formation of a surface-confined PMS* complex to trigger the electron transfer pathway and promote kinetics because of the optimized electronic state of Co centers, while the nonmetal-coordinated graphitic N sites act as preferable pollutant adsorption sites and additional PMS activation sites to accelerate electron transfer. Synergistically, CoCN exhibits ultrahigh activity in PMS activation for p-hydroxybenzoic acid oxidation, achieving complete degradation within 10 min with an ultrahigh turnover frequency of 0.38 min-1, surpassing most reported materials. These findings offer new insights into the versatile functions of N species in SACs and inspire rational design of high-performance catalysts in complicated heterogeneous systems.

10.
Nat Commun ; 15(1): 2850, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565855

RESUMO

Accurately placing very small amounts of electrolyte on tiny micro-supercapacitors (MSCs) arrays in close proximity is a major challenge. This difficulty hinders the development of densely-compact monolithically integrated MSCs (MIMSCs). To overcome this grand challenge, we demonstrate a controllable electrolyte directed assembly strategy for precise isolation of densely-packed MSCs at micron scale, achieving scalable production of MIMSCs with ultrahigh areal number density and output voltage. We fabricate a patterned adhesive surface across MIMSCs, that induce electrolyte directed assembly on 10,000 highly adhesive MSC regions, achieving a 100 µm-scale spatial separation between each electrolyte droplet within seconds. The resultant MIMSCs achieve an areal number density of 210 cells cm-2 and a high areal voltage of 555 V cm-2. Further, cycling the MIMSCs at 190 V over 9000 times manifests no performance degradation. A seamlessly integrated system of ultracompact wirelessly-chargeable MIMSCs is also demonstrated to show its practicality and versatile applicability.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38536699

RESUMO

Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current modeling of brain-inspired spiking neural networks (SNN), backpropagation through time is widely adopted because it can achieve high performance using a small number of time steps. Nevertheless, the synaptic scaling mechanism has not yet been well touched. In this work, we propose an experience-dependent adaptive synaptic scaling mechanism (AS-SNN) for spiking neural networks. The learning process has two stages: First, in the forward path, adaptive short-term potentiation or depression is triggered for each synapse according to afferent stimuli intensity accumulated by presynaptic historical neural activities. Second, in the backward path, long-term consolidation is executed through gradient signals regulated by the corresponding scaling factor. This mechanism shapes the pattern selectivity of synapses and the information transfer they mediate. We theoretically prove that the proposed adaptive synaptic scaling function follows a contraction map and finally converges to an expected fixed point, in accordance with state-of-the-art results in three tasks on perturbation resistance, continual learning, and graph learning. Specifically, for the perturbation resistance and continual learning tasks, our approach improves the accuracy on the N-MNIST benchmark over the baseline by 44% and 25%, respectively. An expected firing rate callback and sparse coding can be observed in graph learning. Extensive experiments on ablation study and cost evaluation evidence the effectiveness and efficiency of our nonparametric adaptive scaling method, which demonstrates the great potential of SNN in continual learning and robust learning.

12.
iScience ; 27(2): 108906, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318370

RESUMO

MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.

13.
Adv Mater ; 36(19): e2313930, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325888

RESUMO

Three-dimensional (3D) printing technology with enhanced fidelity can achieve multiple functionalities and boost electrochemical performance of customizable planar micro-supercapacitors (MSCs), however, precise structural control of additive-free graphene-based macro-assembly electrode for monolithic integrated MSCs (MIMSCs) remains challenging. Here, the large-scale 3D printing fabrication of customizable planar MIMSCs is reported utilizing additive-free, high-quality electrochemically exfoliated graphene inks, which is not required the conventional cryogenic assistance during the printing process and any post-processing reduction. The resulting MSCs reveal an extremely small engineering footprint of 0.025 cm2, exceptionally high areal capacitance of 4900 mF cm-2, volumetric capacitance of 195.6 F cm-3, areal energy density of 2.1 mWh cm-2, and unprecedented volumetric energy density of 23 mWh cm-3 for a single cell, surpassing most previously reported 3D printed MSCs. The 3D printed MIMSC pack is further demonstrated, with the maximum areal cell count density of 16 cell cm-2, the highest output voltage of 192.5 V and the largest output voltage per unit area of 56 V cm-2 up to date are achieved. This work presents an innovative solution for processing high-performance additive-free graphene ink and realizing the large-scale production of 3D printed MIMSCs for planar energy storage.

14.
Diabetes Metab Syndr Obes ; 17: 575-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343582

RESUMO

Background: Type 2 diabetes (T2DM) combined nonalcoholic fatty liver disease (NAFLD) are characterized by metabolic disruptions. Liraglutide has been proved to be effective in T2DM. If LRG could regulate NAFLD combined T2DM has not been reported. Methods: Intraperitoneal injection of 1% streptozotocin (STZ) plus high-sugar and high-fat diet was used to induce NAFLD combined T2DM animal model. Palmitic acid (200 µmol/L) and glucose (25 mmol/L) incubation were used to induce cell model. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and Western blotting, respectively. Results: Liraglutide significantly improved the liver injury of NAFLD combined T2DM rats, but Com-C reversed the effect of liraglutide. The decreased AMPK/mTOR signaling pathway in the NAFLD combined T2DM animals was greatly activated by liraglutide. Com-C reversed the protection effects of liraglutide on palmitic acid+glucose induced cell damage. Conclusion: Liraglutide could greatly alleviate the damage caused by NAFLD+T2DM and palmitic acid+glucose. The protection effects of liraglutide were greatly inhibited by suppressing AMPK/mTOR signaling pathway. This research might provide a novel therapeutic strategy for the prevention and treatment of NAFLD combined T2DM disease.

17.
Glob Chang Biol ; 30(1): e17141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273520

RESUMO

Droughts have been implicated as the main driver behind recent vegetation die-off and are projected to drive greater mortality under future climate change. Understanding the coupling relationship between vegetation and drought has been of great global interest. Currently, the coupling relationship between vegetation and drought is mainly evaluated by correlation coefficients or regression slopes. However, the optimal drought timescale of vegetation response to drought, as a key indicator reflecting vegetation sensitivity to drought, has largely been ignored. Here, we apply the optimal drought timescale identification method to examine the change in coupling between vegetation and drought over the past three decades (1982-2015) with long-term satellite-derived Normalized Difference Vegetation Index and Standardized Precipitation-Evapotranspiration Index data. We find substantial increasing response of vegetation to drought timescales globally, and the correlation coefficient between vegetation and drought under optimal drought timescale overall declines between 1982 and 2015. This decrease in vegetation-drought coupling is mainly observed in regions with water deficit, although its initial correlation is relatively high. However, vegetation in water-surplus regions, with low coupling in earlier stages, is prone to show an increasing trend. The observed changes may be driven by the increasing trend of atmospheric CO2 . Our findings highlight more pressing drought risk in water-surplus regions than in water-deficit regions, which advances our understanding of the long-term vegetation-drought relationship and provides essential insights for mapping future vegetation sensitivity to drought under changing climate conditions.


Assuntos
Mudança Climática , Secas , Água , Ecossistema , China
18.
Adv Sci (Weinh) ; 11(8): e2302172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37537662

RESUMO

A supercapacitor is a potential electrochemical energy storage device with high-power density (PD) for driving flexible, smart, electronic devices. In particular, flexible supercapacitors (FSCs) have reliable mechanical and electrochemical properties and have become an important part of wearable, smart, electronic devices. It is noteworthy that the flexible electrode, electrolyte, separator and current collector all play key roles in overall FSCs. In this review, the unique mechanical properties, structural designs and fabrication methods of each flexible component are systematically classified, summarized and discussed based on the recent progress of FSCs. Further, the practical applications of FSCs are delineated, and the opportunities and challenges of FSCs in wearable technologies are proposed. The development of high-performance FSCs will greatly promote electricity storage toward more practical and widely varying fields. However, with the development of portable equipment, simple FSCs cannot satisfy the needs of integrated and intelligent flexible wearable devices for long durations. It is anticipated that the combining an FSC and a flexible power source such as flexible solar cells is an effective strategy to solve this problem. This review also includes some discussions of flexible self-powered devices.

19.
Angew Chem Int Ed Engl ; 63(3): e202316903, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997556

RESUMO

Proton exchange membrane water electrolysis is a highly promising hydrogen production technique for sustainable energy supply, however, achieving a highly active and durable catalyst for acidic water oxidation still remains a formidable challenge. Herein, we propose a local microenvironment regulation strategy for precisely tuning In-RuO2 /graphene (In-RuO2 /G) catalyst with intrinsic electrochemical activity and stability to boost acidic water oxidation. The In-RuO2 /G displays robust acid oxygen evolution reaction performance with a mass activity of 671 A gcat -1 at 1.5 V, an overpotential of 187 mV at 10 mA cm-2 , and long-lasting stability of 350 h at 100 mA cm-2 , which arises from the asymmetric Ru-O-In local structure interactions. Further, it is unraveled theoretically that the asymmetric Ru-O-In structure breaks the thermodynamic activity limit of the traditional adsorption evolution mechanism which significantly weakens the formation energy barrier of OOH*, thus inducing a new rate-determining step of OH* absorption. Therefore, this strategy showcases the immense potential for constructing high-performance acidic catalysts for water electrolyzers.

20.
STAR Protoc ; 4(4): 102746, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38060443

RESUMO

The commercial mass production of bifunctional oxygen catalysts with high activity and stability is critical for constructing high-performance lithium-oxygen (Li-O2) batteries, but remains challenging. Herein, we describe a protocol for the scalable fabrication of a 2D bifunctional electrocatalyst of Pt/RuO2/graphene by spatial confinement strategy and elaborately evaluate its oxygen reduction/evolution reactions for advanced Li-O2 batteries. We then detail the synthesis steps for preparing materials followed by assembly and evaluation of the three-electrode systems and coin-type Li-O2 batteries. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.


Assuntos
Grafite , Oxigênio , Humanos , Lítio , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...