Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897546

RESUMO

In this study, the potential application of slag-fly ash-based geopolymers as stabilizers for soft soil in sulfate erosion areas was investigated to promote environmental protection and waste residue recycling. The changes in the physical and mechanical properties and microstructure characteristics of cement-stabilized soil/geopolymer-stabilized soil under sulfate erosion were comparatively studied through tests such as appearance change, mass change, strength development, and microscopic examination. The results show that the sulfate resistance of stabilized soil is significantly affected by the stabilizer type. In the sulfate environment, the cement-stabilized soil significantly deteriorates with erosion age due to the expansion stress induced by AFt, while the geopolymer-stabilized soil exhibits excellent sulfate resistance. The slag-fly ash ratio (10:0, 9:1, 8:2 and 7:3) is an important factor affecting the sulfate resistance of geopolymer-stabilized soils, and the preferred value occurs at 9:1 (G-2). When immersed for 90 d, the unconfined compressive strength value of G-2 is 7.13 MPa, and its strength retention coefficient is 86.6%. The N-A-S-H gel formed by the polymerization in the geopolymer contributes to hindering the intrusion of sulfate ions, thereby improving the sulfate resistance of stabilized soil. The research results can provide a reference for technology that stabilizes soil with industrial waste in sulfate erosion areas.

2.
Materials (Basel) ; 15(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744120

RESUMO

To promote the application of the bamboo grid in the soil-rock mixture subgrade in mountain areas, the mechanical properties of bamboo reinforcement were investigated in this study, and the reinforcement effect and interface characteristics of uniaxial/biaxial bamboo grid on the soil-rock mixture under different vertical loads was comparatively analyzed. The results show that the tensile force (2% elongation) of the bamboo reinforcement is 50.21 kN/m, and its average tensile strength is 236.01 MPa. Moreover, bamboo reinforcement has excellent shear and flexural properties. In general, the reinforcement effect of the biaxial bamboo grid on the soil-rock mixed subgrade is better than that of the uniaxial bamboo grid. In the case of using a uniaxial bamboo grid, its pull-out curve is generally a strain-softening type. As for the biaxial bamboo grid, due to the existence of bite force, its pull-out curve usually presents a strain-hardening type. Compared with the uniaxial bamboo grid, the friction coefficient of the reinforcement-soil interface using the biaxial bamboo grid is higher, and the interfacial shear stress is increased by 72.2-91.2%.

3.
Front Chem ; 9: 712453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368083

RESUMO

Pickering emulsion offers a promising platform for conducting interfacial reactions between immiscible reagents; it is particularly suitable for hydrogen production by photoreforming of non-water soluble biomass liquid and water. Herein, Pt-promoted (001)-facet-dominated anatase TiO2 nanosheets were synthesized by a hydrothermal route associated with microfluidic technology for high activity and metal dispersion, and selective surface modification was carried out for preparing Janus particles. Photoreforming hydrogen production through n-octanol and water that formed O/W microemulsion with an average diameter of 540 µm was achieved to obtain amphiphilic catalyst. The as-prepared 2D Janus-type catalysts exhibited remarkably stable emulsification performance as well as photocatalytic activity. This finding indicates that triethoxyfluorosilane had negligible impact on the catalytic performance, yet provided a remarkable benefit to large specific surface area at microemulsion interface, thereby enhancing the H2 yield up to 2003 µmol/g. The cyclic experiments indicate that the decrease in cyclic performance was more likely to be caused by the coalescence of the microemulsion rather than the decrease in catalytic activity, and the microemulsion could be easily recovered by simply hand shaking to more than 96% of the initial performance.

4.
Front Chem ; 8: 342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509721

RESUMO

Solar-driven photocatalytic reforming of biomass-derived resources for hydrogen production offers a sustainable route toward the generation of clean and renewable fuels. However, the dispersion stability of the catalyst particles in the aqueous phase hinders the efficiency of hydrogen production. In this work, a novel method of mixing Ag2O-TiO2 photocatalysts with different morphologies was implemented to promote colloidal dispersion stability, thereby improving hydrogen production performance. A series of Ag2O-TiO2 nanoparticles with different morphologies were synthesized, and their dispersion stabilities in aqueous phase were investigated individually. Two types of Ag2O-TiO2 particles with different morphologies under certain proportions were mixed and suspended in glycerol aqueous solution without adding any dispersant for enhancing dispersion stability while reacting. From the results, photocatalytic hydrogen production was found to be strongly correlated to colloidal dispersion stability. The mixed suspension of Ag2O-TiO2 nanosphere and nanoplate achieved an excellent colloidal dispersion stability without employing any additives or external energy input, and the photoreforming hydrogen production obtained from this binary component system was around 1.1-2.3 times higher than that of the single-component system. From the calculated hydrogen production rate constants between continuous stirring and the binary system, there was only <6% difference, suggesting an efficient mass transfer of the binary system for photoreforming hydrogen production. The proposed method could provide some inspiration to a more energy-efficient heterogeneous catalytic hydrogen production process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...