Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
Cureus ; 16(3): e56268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623103

RESUMO

We report a case of isolated left abducens nerve palsy accompanying a right thalamic infarct. The patient, a 43-year-old Malay male with newly diagnosed hypertension, diabetes mellitus, and dyslipidemia, initially reported binocular diplopia on left lateral gaze persisting for five weeks. Subsequently, he experienced acute left-sided body weakness and slurred speech for over one day. Clinical examination revealed restricted left eye lateral gaze (-3) with no relative afferent pupillary defect. Additionally, decreased power (4/5) was noted in the left upper and lower limbs. Brain magnetic resonance imaging (MRI) revealed restricted diffusion in the right thalamus extending to the right posterior internal capsule, left anterior cingulate gyrus, and left caudate nucleus. The patient was initiated on antiplatelet, antihypertensive, and oral hypoglycemic agents, resulting in symptom improvement. This rare neuroophthalmological finding has not been reported previously.

2.
Cureus ; 16(2): e53577, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38445140

RESUMO

We report a case of central retinal artery occlusion with concurrent ischemic stroke in a young patient. A 34-year-old Malay gentleman, an ex-smoker with underlying dyslipidemia, however, not on medication or follow-up, presented with acute, generalized, and painless right eye blurring of vision for one day. He also complained of on-and-off headaches for the past three months prior to the presentation. Visual acuity assessment demonstrated hand movement in the right eye, whereas in the left eye, it was 6/6, along with a right eye relative afferent pupillary defect. His right eye showed reduced optic nerve function and unremarkable anterior segment, with fundus examination revealing the presence of a cherry red spot, pale macula, boxcarring pattern over superior arcuate, and vascularized retina over inferior optic disc with blurred optic disc margin. The left eye examination was unremarkable. All cranial nerves were intact, except for the optic nerve. He was admitted to the ward. While in the ward, he developed a sudden onset of left-sided upper and lower limb weakness and numbness and was diagnosed with acute ischemic stroke. Blood investigations showed raised low-density lipoprotein cholesterol of 3.51 mmol/L, anti-nuclear antibody (ANA) positive, with electrocardiogram (ECG) sinus rhythm, and no atrial fibrillation. The echocardiogram was normal, and computed tomography angiography of the brain showed non-opacification at the origin and proximal part of the right ophthalmic artery, suspicious of thrombosis with distal reconstitution, with no evidence of thrombosis in the rest of neck and intracranial arteries. The patient was started on aspirin 150 mg once a day and atorvastatin 20 mg at night; subsequently, his vision improved slightly.

3.
Sci Rep ; 14(1): 6200, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486026

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive types of squamous cell carcinoma and represents a significant proportion of esophageal cancer. Metabolic reprogramming plays a key role in the occurrence and development of ESCC. Unsupervised clustering analysis was employed to stratify ESCC samples into three clusters: MPC1-lipid type, MPC2-amino acid type, and MPC3-energy type, based on the enrichment scores of metabolic pathways extracted from the Reactome database. The MPC3 cluster exhibited characteristics of energy metabolism, with heightened glycolysis, cofactors, and nucleotide metabolism, showing a trend toward increased aggressiveness and poorer survival rates. On the other hand, MPC1 and MPC2 primarily involved lipid and amino acid metabolism, respectively. In addition, liquid chromatography‒mass spectrometry-based metabolite profiles and potential therapeutic agents were explored and compared among ESCC cell lines with different MPCs. MPC3 amplified energy metabolism markers, especially carnitines. In contrast, MPC1 and MPC2 predominantly had elevated levels of lipids (primarily triacylglycerol) and amino acids, respectively. Furthermore, MPC3 demonstrated a suboptimal clinical response to PD-L1 immunotherapy but showed increased sensitivity to the doramapimod chemotherapy regimen, as evident from drug sensitivity evaluations. These insights pave the way for a more personalized therapeutic approach, potentially enhancing treatment precision for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Aminoácidos/metabolismo , Glicólise , Lipídeos
4.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472828

RESUMO

Foods containing tea could be widely utilized due to the addition of good tea ingredients, especially large-leaf yellow tea, which is rich with a good flavor. Applying this change to bread containing tea would improve its product quality. In this research, large-leaf yellow tea bread (LYB), possessing a special flavor, was developed using ultrafine large-leaf yellow tea powder and flour as the main raw materials. The amount of ultrafine large-leaf yellow tea powder added to bread was optimized using texture, sensation, and specific volume as comprehensive evaluation indicators. At the optimal dosage, the free amino acids, volatile flavor compounds, antioxidant activity, and in vitro starch digestibility of LYB were measured. Response surface optimization experimental results showed that the comprehensive score of bread was highest when the added amount of ultrafine large-leaf yellow tea powder was 3%. In particular, compared to blank bread (BB), adding ultrafine large-leaf yellow tea powder into bread could effectively increase its amino acid composition, enhance its volatile flavor compounds, improve the antioxidant capacity, and reduce the digestibility of starch.

5.
Nat Commun ; 15(1): 1853, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424040

RESUMO

Many machine learning applications in bioinformatics currently rely on matching gene identities when analyzing input gene signatures and fail to take advantage of preexisting knowledge about gene functions. To further enable comparative analysis of OMICS datasets, including target deconvolution and mechanism of action studies, we develop an approach that represents gene signatures projected onto their biological functions, instead of their identities, similar to how the word2vec technique works in natural language processing. We develop the Functional Representation of Gene Signatures (FRoGS) approach by training a deep learning model and demonstrate that its application to the Broad Institute's L1000 datasets results in more effective compound-target predictions than models based on gene identities alone. By integrating additional pharmacological activity data sources, FRoGS significantly increases the number of high-quality compound-target predictions relative to existing approaches, many of which are supported by in silico and/or experimental evidence. These results underscore the general utility of FRoGS in machine learning-based bioinformatics applications. Prediction networks pre-equipped with the knowledge of gene functions may help uncover new relationships among gene signatures acquired by large-scale OMICs studies on compounds, cell types, disease models, and patient cohorts.


Assuntos
Aprendizado Profundo , Humanos , Aprendizado de Máquina , Biologia Computacional , Desenvolvimento de Medicamentos
6.
Huan Jing Ke Xue ; 45(1): 555-566, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216504

RESUMO

Agricultural utilization of reclaimed water is considered to be an effective way to solve water shortage and reduce water environmental pollution. Silicon fertilizer can improve crop yield and quality and enhance crop resistance. The effect of foliar spray with silicon fertilizer on phyllosphere microbial communities remains lacking. In this study, a pot experiment was conducted to explore the effects of different types of silicon fertilizer on the composition and diversity of a phyllosphere bacterial community and the abundances of related functional genes in rice irrigated with reclaimed water. The results showed that Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Verrucomicrobiota dominated the phyllosphere bacteria of rice. The relative abundance of Bacillus was higher than that of other treatments in RIS3. Reclaimed water irrigation significantly increased the relative abundances of the potential pathogens Pantoea and Enterobacter. The unclassified bacteria were also an important part of the bacterial community in the rice phyllosphere. Bacillus, Exiguobacterium, Aeromonas, and Citrobacter were significantly enriched by silicon fertilizer treatments. Functional prediction analysis showed that indicator species were mainly involved in metabolism and degradation functions, and the predicted functional groups of phyllosphere bacteria were attributed to chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and fermentation. Quantitative PCR results showed that AOA, AOB, and nifH genes were at low abundance levels in all treatments, and nirK genes was not significantly different among treatments. These results contribute to the in-depth understanding of the effects of foliar spray silicon fertilizer on the bacterial community structure and diversity of rice phyllosphere and provide a theoretical basis for the application of silicon fertilizer in reclaimed water irrigation agriculture.


Assuntos
Bacillus , Oryza , Fertilizantes/análise , Silício/farmacologia , Solo/química , Água/análise , Bactérias/genética , Microbiologia do Solo
7.
Angew Chem Int Ed Engl ; 63(1): e202315233, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37990773

RESUMO

Eliminating the undesired photoinstability of excess lead iodide (PbI2 ) in the perovskite film and reducing the energy mismatch between the perovskite layer and heterogeneous interfaces are urgent issues to be addressed in the preparation of perovskite solar cells (PVSCs) by two-step sequential deposition method. Here, the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4 ) is employed to convert superfluous PbI2 to more robust 1D EMIMPbI3 which can withstand lattice strain, while forming an interfacial dipole layer at the SnO2 /perovskite interface to reconfigure the interfacial energy band structure and accelerate the charge extraction. Consequently, the unencapsulated PVSCs device attains a champion efficiency of 24.28 % with one of the highest open-circuit voltage (1.19 V). Moreover, the unencapsulated devices showcase significantly improved thermal stability, enhanced environmental stability and remarkable operational stability accompanied by 85 % of primitive efficiency retained over 1500 h at maximum power point tracking under continuous illumination.

8.
Adv Mater ; 36(12): e2211783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37201199

RESUMO

Hygroscopic hydrogels are emerging as scalable and low-cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel-salt composites are characterized. By tuning the salt concentration of the swelling solutions and the cross-linking properties of the gels, hygroscopic hydrogels with extremely high salt loadings are synthesized, which enable unprecedented water uptakes of 1.79 and 3.86 gg-1 at relative humidity (RH) of 30% and 70%, respectively. At 30% RH, this exceeds previously reported water uptakes of metal-organic frameworks by over 100% and of hydrogels by 15%, bringing the uptake within 93% of the fundamental limit of hygroscopic salts while avoiding leakage problems common in salt solutions. By modeling the salt-vapor equilibria, the maximum leakage-free RH is elucidated as a function of hydrogel uptake and swelling ratio. These insights guide the design of hydrogels with exceptional hygroscopicity that enable sorption-based devices to tackle water scarcity and the global energy crisis.

9.
Int J Legal Med ; 138(2): 561-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37801116

RESUMO

Species identification of biological specimens can provide the valuable clues and accelerate the speed of prosecution material processing for forensic investigation, especially when the case scene is inaccessible and the physical evidence is cumbersome. Thus, establishing a rapid, simple, and field-adapted species identification method is crucial for forensic scientists, particularly as first-line technology at the crime scene for initial rapid screening. In this study, we established a new field-adapted species identification method by combining multiplex multienzyme isothermal rapid amplification (MIRA), lateral flow dipstick (LFD) system, and universal primers. Universal primers targeting COX I and COX II genes were used in multiplex MIRA-LFD system for seven species identification, and a dedicated MIRA-LFD system primer targeting CYT B gene was used to detect the human material. DNA extraction was performed by collecting DNA directly from the centrifuged supernatant. Our study found that the entire amplification process took only 15 min at 37 °C and the results of LFDs could be visually observed after 10 min. The detection sensitivity of human material could reach 10 pg, which is equivalent to the detection of single cell. Different common animal samples mixed at the ratio of 1 ng:1 ng, 10 ng:1 ng, and 1 ng:10 ng could be detected successfully. Furthermore, the damaged and degraded samples could also be detected. Therefore, the convenient, feasible, and rapid approach for species identification is suitable for popularization as first-line technology at the crime scene for initial rapid screening and provides a great convenient for forensic application.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Animais , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos
10.
Appl Environ Microbiol ; 90(1): e0101923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126785

RESUMO

Butyrate, a physiologically active molecule, can be synthesized through metabolic interactions among colonic microorganisms. Previously, in a fermenting trial of human fecal microbiota, we observed that the butyrogenic effect positively correlated with the increasing Bifidobacterium population and an unidentified Megasphaera species. Therefore, we hypothesized that a cross-feeding phenomenon exists between Bifidobacterium and Megasphaera, where Megasphaera is the butyrate producer, and its growth relies on the metabolites generated by Bifidobacterium. To validate this hypothesis, three bacterial species (B. longum, B. pseudocatenulatum, and M. indica) were isolated from fecal cultures fermenting hydrolyzed xylan; pairwise cocultures were conducted between the Bifidobacterium and M. indica isolates; the microbial interactions were determined based on bacterial genome information, cell growth, substrate consumption, metabolite quantification, and metatranscriptomics. The results indicated that two Bifidobacterium isolates contained distinct gene clusters for xylan utilization and expressed varying substrate preferences. In contrast, M. indica alone scarcely grew on the xylose-based substrates. The growth of M. indica was significantly elevated by coculturing it with bifidobacteria, while the two Bifidobacterium species responded differently in the kinetics of cell growth and substrate consumption. Coculturing led to the depletion of lactate and increased the formation of butyrate. An RNA-seq analysis further revealed the upregulation of M. indica genes involved in the lactate utilization and butyrate formation pathways. We concluded that lactate generated by Bifidobacterium through catabolizing xylose fueled the growth of M. indica and triggered the synthesis of butyrate. Our findings demonstrated a novel cross-feeding mechanism to generate butyrate in the human colon.IMPORTANCEButyrate is an important short-chain fatty acid that is produced in the human colon through microbial fermentation. Although many butyrate-producing bacteria exhibit a limited capacity to degrade nondigestible food materials, butyrate can be formed through cross-feeding microbial metabolites, such as acetate or lactate. Previously, the literature has explicated the butyrate-forming links between Bifidobacterium and Faecalibacterium prausnitzii and between Bifidobacterium and Eubacterium rectale. In this study, we provided an alternative butyrate synthetic pathway through the interaction between Bifidobacterium and Megasphaera indica. M. indica is a species named in 2014 and is indigenous to the human intestinal tract. Scientific studies explaining the function of M. indica in the human colon are still limited. Our results show that M. indica proliferated based on the lactate generated by bifidobacteria and produced butyrate as its end metabolic product. The pathways identified here may contribute to understanding butyrate formation in the gut microbiota.


Assuntos
Bifidobacterium , Ácido Láctico , Humanos , Ácido Láctico/metabolismo , Bifidobacterium/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Butiratos/metabolismo , Megasphaera/metabolismo , Fermentação
11.
Inflammopharmacology ; 32(1): 335-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097885

RESUMO

BACKGROUND: The clinical efficacy and safety of intravenous immunoglobulin (IVIg) treatment for COVID-19 remain controversial. This study aimed to map the current status and gaps of available evidence, and conduct a meta-analysis to further investigate the benefit of IVIg in COVID-19 patients. METHODS: Electronic databases were searched for systematic reviews/meta-analyses (SR/MAs), primary studies with control groups, reporting on the use of IVIg in patients with COVID-19. A random-effects meta-analysis with subgroup analyses regarding study design and patient disease severity was performed. Our outcomes of interest determined by the evidence mapping, were mortality, length of hospitalization (days), length of intensive care unit (ICU) stay (days), number of patients requiring mechanical ventilation, and adverse events. RESULTS: We included 34 studies (12 SR/MAs, 8 prospective and 14 retrospective studies). A total of 5571 hospitalized patients were involved in 22 primary studies. Random-effects meta-analyses of very low to moderate evidence showed that there was little or no difference between IVIg and standard care or placebo in reducing mortality (relative risk [RR] 0.91; 95% CI 0.78-1.06; risk difference [RD] 3.3% fewer), length of hospital (mean difference [MD] 0.37; 95% CI - 2.56, 3.31) and ICU (MD 0.36; 95% CI - 0.81, 1.53) stays, mechanical ventilation use (RR 0.92; 95% CI 0.68-1.24; RD 2.8% fewer), and adverse events (RR 0.98; 95% CI 0.84-1.14; RD 0.5% fewer) of patients with COVID-19. Sensitivity analysis using a fixed-effects model indicated that IVIg may reduce mortality (RR 0.76; 95% CI 0.60-0.97), and increase length of hospital stay (MD 0.68; 95% CI 0.09-1.28). CONCLUSION: Very low to moderate certainty of evidence indicated IVIg may not improve the clinical outcomes of hospitalized patients with COVID-19. Given the discrepancy between the random- and fixed-effects model results, further large-scale and well-designed RCTs are warranted.


Assuntos
COVID-19 , Imunoglobulinas Intravenosas , Humanos , Imunoglobulinas Intravenosas/efeitos adversos , Estudos Prospectivos , Estudos Retrospectivos , Revisões Sistemáticas como Assunto
12.
Chinese Journal of Pediatrics ; (12): 22-28, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013244

RESUMO

Objective: To describe the current status and trends in the outcomes and care practices of extremely preterm infants at 22-25 weeks' gestation age from the Chinese Neonatal Network (CHNN) from 2019 to 2021. Methods: This cross-sectional study used data from the CHNN cohort of very preterm infants. All 963 extremely preterm infants with gestational age between 22-25 weeks who were admitted to neonatal intensive care units (NICU) of the CHNN from 2019 to 2021 were included. Infants admitted after 24 hours of life or transferred to non-CHNN hospitals were excluded. Perinatal care practices, survival rates, incidences of major morbidities, and NICU treatments were described according to different gestational age groups and admission years. Comparison among gestational age groups was conducted using χ2 and Kruskal-Wallis tests. Trends by year were evaluated by Cochran-Armitage and Jonckheere-Terpstra tests for trend. Results: Of the 963 extremely preterm infants enrolled, 588 extremely preterm infants (61.1%) were male. The gestational age was 25.0 (24.4, 25.6) weeks, with 29 extremely preterm infants (3.0%), 88 extremely preterm infants (9.1%), 264 extremely preterm infants (27.4%), and 582 extremely preterm infants (60.4%) at 22, 23, 24, and 25 weeks of gestation age, respectively. The birth weight was 770 (680, 840) g. From 2019 to 2021, the number of extremely preterm infants increased each year (285, 312, and 366 extremely preterm infants, respectively). Antenatal steroids and magnesium sulfate were administered to 67.7% (615/908) and 51.1% (453/886) mothers of extremely preterm infants. In the delivery room, 20.8% (200/963) and 69.5% (669/963) extremely preterm infants received noninvasive positive end-expiratory pressure support and endotracheal intubation. Delayed cord clamping and cord milking were performed in 19.0% (149/784) and 30.4% (241/794) extremely preterm infants. From 2019 to 2021, there were significant increases in the usage of antenatal steroids, antenatal magnesium sulfate, and delivery room noninvasive positive-end expiratory pressure support (all P<0.05). Overall, 349 extremely preterm infants (36.2%) did not receive complete care, 392 extremely preterm infants (40.7%) received complete care and survived to discharge, and 222 extremely preterm infants (23.1%) received complete care but died in hospital. The survival rates for extremely preterm infants at 22, 23, 24 and 25 weeks of gestation age were 10.3% (3/29), 23.9% (21/88), 33.0% (87/264) and 48.3% (281/582), respectively. From 2019 to 2021, there were no statistically significant trends in complete care, survival, and mortality rates (all P>0.05). Only 11.5% (45/392) extremely preterm infants survived without major morbidities. Moderate to severe bronchopulmonary dysplasia (67.3% (264/392)) and severe retinopathy of prematurity (61.5% (241/392)) were the most common morbidities among survivors. The incidences of severe intraventricular hemorrhage or periventricular leukomalacia, necrotizing enterocolitis, and sepsis were 15.3% (60/392), 5.9% (23/392) and 19.1% (75/392), respectively. Overall, 83.7% (328/392) survivors received invasive ventilation during hospitalization, with a duration of 22 (10, 42) days. The hospital stay for survivors was 97 (86, 116) days. Conclusions: With the increasing number of extremely preterm infants at 22-25 weeks' gestation admitted to CHNN NICU, the survival rate remained low, especially the rate of survival without major morbidities. Further quality improvement initiatives are needed to facilitate the implementation of evidence-based care practices.


Assuntos
Lactente , Recém-Nascido , Masculino , Humanos , Feminino , Gravidez , Lactente Extremamente Prematuro , Idade Gestacional , Sulfato de Magnésio/uso terapêutico , Estudos Transversais , Doenças do Prematuro/epidemiologia , Doenças do Recém-Nascido , Esteroides , Unidades de Terapia Intensiva Neonatal , China/epidemiologia
13.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134437

RESUMO

Due to the unique ability to mimic natural enzymes, single-atom nanoenzymes (SAE) have garnered significant attention and research in tumor therapy. However, their efficacy often faces challenges in terms of drug delivery methods, and the research regarding their applications in radiotherapy is scarce. Herein, we introduce a light-controlled SAE hydrogel platform (SH) for glutathione-depletion-mediated low-dose radiotherapy. The SH incorporates a Cu single-atom enzyme (CuSA), and upon irradiation with 1064 nm near-infrared light, the CuSA can convert light energy into heat, which in turn degrades the hydrogel, enabling the release of CuSA into tumor cells or tissues. The diffused CuSA not only can facilitate the conversion of H2O2into hydroxyl radicals (•OH), but also can effectively depletes cellular glutathione. This leads to increased sensitivity of tumor cells to radiotherapy, resulting in enhanced cytotoxicity even at low doses. The animal study results further confirmed the good tumor-killing efficacy of this SH system. To the best of our knowledge, this stands as the pioneering report on leveraging a single-atom enzyme for GSH depletion-mediated low-dose radiotherapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Animais , Difusão , Glutationa , Temperatura Alta , Hidrogéis , Peróxido de Hidrogênio
14.
Sci Adv ; 9(51): eadk1704, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117883

RESUMO

Here, an Ir/Zn-cocatalyzed atroposelective [2+2+2] cycloaddition of 1,6-diynes and ynamines was developed, forging various functionalized C─N axially chiral indoles and pyrroles in generally good to excellent yields (up to 99%), excellent chemoselectivities, and high enantioselectivities (up to 98% enantiomeric excess) with wide substrate scope. This cocatalyzed strategy not only provided an alternative promising and reliable way for asymmetric alkyne [2+2+2] cyclotrimerization in an easy handle but also settled the issues of previous [Rh(COD)2]BF4-catalyzed system on the construction of C─N axial chirality such as complex operations, limited substrate scope, and low efficiency. In addition, control experiments and theoretical calculations disclosed that Zn(OTf)2 markedly reduced the barrier of migration insertion to significantly increase reaction efficiency, which was distinctly different from previous work on the Lewis acid for improving reaction yield through accelerating oxidative addition and reductive elimination.

15.
Med Dosim ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37925299

RESUMO

INTRODUCTION: A beam angle optimization (BAO) algorithm was developed to evaluate its clinical feasibility and investigate the impact of varying BAO constraints on breast cancer treatment plans. MATERIALS AND METHODS: A two-part study was designed. In part 1, we retrospectively selected 20 patients treated with radiotherapy after breast-conserving surgery. For each patient, BAO plans were designed using beam angles optimized by the BAO algorithm and the same optimization constraints as manual plans. Dosimetric indices were compared between BAO and manual plans. In part 2, fifteen patients with left breast cancer were included. For each patient, three distinct cardiac constraints (mean heart dose < 5 Gy, 3 Gy or 1 Gy) were established during the BAO process to obtain three optimized beam sets which were marked as BAO_H1, BAO_H3, BAO_H5, respectively. These sets of beams were then utilized under identical IMRT constraints for planning. Comparative analysis was conducted among the three groups of plans. RESULTS: For part 1, no significant differences were observed between BAO plans and manual plans in all dosimetric indices, except for ipsilateral lung V5, where BAO plans performed slightly better than manual plans (35.5% ± 5.6% vs 36.9% ± 4.3%, p = 0.034). For part 2, Stricter BAO heart constraints resulted in more perpendicular beams. However, there was no significant difference between BAO_H1, BAO_H3 and BAO_H5 with the same IMRT constraint in the heart dose. Meanwhile, the left lung dose was increased while the right breast and lung doses were decreased with stricter heart constraints in BAO. When mean heart dose < 5 Gy in IMRT constraint, the mean dose to the right lung was decreased from 0.46 Gy for BAO_H5 to 0.33 Gy for BAO_H1 (p = 0.027). CONCLUSIONS: The BAO algorithm can achieve quality plans comparable to manual plans. IMRT constraints dominate the final plan dose, while varying BAO constraints alter the trade-off among structures, providing an additional degree of freedom in planning design.

16.
Microbiol Spectr ; 11(6): e0139123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909756

RESUMO

The bla PAC-1 has been reported in Central Asia and Europe countries like Afghanistan and France in Aeromonas caviae and Pseudomonas aeruginosa strains from animals and patients, respectively. However, there is no record of bla PAC-1-carrying strain from the natural environment, and bla PAC-1-carrying Aeromonas has not been reported in the Asia Pacific. Here, we report the first known enviromental bla PAC-1-carrying Aeromonas enteropelogenes in the world from reservoir water in Singapore. We have performed a comprehensive genetic environment alignment and comparison of bla PAC-1 between our strain and other strains from different countries and sources and found the bla PAC-1 located on a highly conserved gene cluster. We suggest that environmental Aeromonas strains may act as a hidden reservoir involved in the circulating of bla PAC-1. The finding of conserved bla PAC-1 cluster also suggested the existence of multiple transmission pathways of bla PAC-1 in the Asia-Pacific region, involving multiple sources and different species.


Assuntos
Aeromonas , beta-Lactamases , Animais , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Aeromonas/genética , Aeromonas/metabolismo , Ásia , França , Antibacterianos , Testes de Sensibilidade Microbiana
17.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858069

RESUMO

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Assuntos
Balantidium , Cipriniformes , Animais , Carboidratos , Metabolismo Energético , Amido
18.
Theor Appl Genet ; 136(9): 183, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555965

RESUMO

KEY MESSAGE: The transcription factor StDL1 regulates dissected leaf formation in potato and the genotype frequency of recessive Stdl1/Stdl1, which results in non-dissected leaves, has increased in cultivated potatoes. Leaf morphology is a key trait of plants, influencing plant architecture, photosynthetic efficiency and yield. Potato (Solanum tuberosum L.), the third most important food crop worldwide, has a diverse leaf morphology. However, despite the recent identification of several genes regulating leaf formation in other plants, few genes involved in potato leaf development have been reported. In this study, we identified an R2R3 MYB transcription factor, Dissected Leaf 1 (StDL1), regulating dissected leaf formation in potato. A naturally occurring allele of this gene, Stdl1, confers non-dissected leaves in young seedlings. Knockout of StDL1 in a diploid potato changes the leaf morphology from dissected to non-dissected. Experiments in N. benthamiana and yeast show that StDL1 is a transcriptional activator. Notably, by calculating the genotype frequency of the Stdl1/Stdl1 in 373-potato accessions, we found that it increases significantly in cultivated potatoes. This work reveals the genetic basis of dissected leaf formation in potato and provides insights into plant leaf morphology.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fotossíntese , Fenótipo
19.
World J Clin Cases ; 11(20): 4926-4931, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37583986

RESUMO

BACKGROUND: This study aims to describe the application of a modified St. Thomas' solution in patients with severe limb injuries. CASE SUMMARY: Four patients who sustained a high-energy trauma and underwent complete upper limb amputation were pretreated with a modified St. Thomas' solution before upper limb replantation. After the perfusion solution stopped flowing from the blood vessel, the amputated upper limb amputation was replanted. The patients were instructed to perform functional rehabilitation training after the operation. All 4 patients were followed up for 5 years. All the severed upper limbs survived. Routine re-examination after the operation showed that the function of the affected limb was restored. All the patients were satisfied with the sensory and functional recovery of the affected limb. CONCLUSION: The modified St. Thomas' solution can effectively improve the success rate of limb salvage surgery and the recovery of limb function in patients with a severe limb injury.

20.
Nano Lett ; 23(17): 7790-7796, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638677

RESUMO

Advances in two-dimensional (2D) devices require innovative approaches for manipulating transport properties. Analogous to the electrical and optical responses, it has been predicted that thermal transport across 2D materials can have a similar strong twist-angle dependence. Here, we report experimental evidence deviating from this understanding. In contrast to the large tunability in electrical transport, we measured an unexpected weak twist-angle dependence of interfacial thermal transport in MoS2 bilayers, which is consistent with theoretical calculations. More notably, we confirmed the existence of distinct regimes with weak and strong twist-angle dependencies for thermal transport, where, for example, a much stronger change with twist angles is expected for graphene bilayers. With atomic simulations, the distinct twist-angle effects on different 2D materials are explained by the suppression of long-wavelength phonons via the moiré superlattice. These findings elucidate the unique feature of 2D thermal transport and enable a new design space for engineering thermal devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...