Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbes Infect ; 25(3): 105062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36280208

RESUMO

With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).


Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Viroses , Humanos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/metabolismo , Interferon Tipo I/metabolismo , Replicação Viral , Proteínas não Estruturais Virais/genética
2.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408175

RESUMO

Guanylate-binding protein 7 (GBP7) belongs to the GBP family, which plays key roles in mediating innate immune responses to intracellular pathogens. Thus far, GBP7 has been reported to be a critical cellular factor against bacterial infection. However, the relationship between GBP7 and influenza A virus (IAV) replication is unknown. Here, we showed that GBP7 expression was significantly upregulated in the lungs of mice, human peripheral blood mononuclear cells (PBMCs), and A549 cells during IAV infection. Using the CRISPR-Cas9 system and overexpression approaches, it was found that GBP7 knockout inhibited IAV replication by enhancing the expression of IAV-induced type I interferon (IFN), type III IFN, and proinflammatory cytokines. Conversely, overexpression of GBP7 facilitated IAV replication by suppressing the expression of those factors. Furthermore, GBP7 knockout enhanced IAV-induced nuclear factor-κB (NF-κB) activation and phosphorylation of stat1 and stat2; overexpression of GBP7 had the opposite effect. Our data indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, upon IAV infection, the induced GBP7 facilitated IAV replication by suppressing innate immune responses to IAV infection, which suggested that GBP7 serves as a therapeutic target for controlling IAV infection.IMPORTANCE So far, few studies have mentioned the distinct function of guanylate-binding protein 7 (GBP7) on virus infection. Here, we reported that GBP7 expression was significantly upregulated in the lungs of mice, human PBMCs, and A549 cells during IAV infection. GBP7 facilitated IAV replication by suppressing the expression of type I interferon (IFN), type III IFN, and proinflammatory cytokines. Furthermore, it was indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, our results elucidate a critical role of GBP7 in the host immune system during IAV infection.


Assuntos
Proteínas de Ligação ao GTP/imunologia , Vírus da Influenza A/fisiologia , Fator Gênico 3 Estimulado por Interferon, Subunidade alfa/metabolismo , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/imunologia , Replicação Viral , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Evasão da Resposta Imune , Imunidade Inata , Vírus da Influenza A/imunologia , Interferons/genética , Interferons/imunologia , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Fosforilação , Transdução de Sinais/imunologia
3.
Biochem Biophys Res Commun ; 526(4): 1143-1149, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32327257

RESUMO

In this study, we examined the impact of roscovitine, a cyclin-dependent kinase inhibitor (CDKI) that has entered phase I and II clinical trials, on influenza A viruses (IAVs) and its antiviral mechanism. The results illustrated that roscovitine inhibited multiple subtypes of influenza strains dose-dependently, including A/WSN/1933(H1N1), A/Aichi/2/68 (H3N2) and A/FM1/47 (H1N1) with IC50 value of 3.35 ± 0.39, 7.01 ± 1.84 and 5.99 ± 1.89 µM, respectively. Moreover, roscovitine suppressed the gene transcription and genome replication steps in the viral life cycle. Further mechanistic studies indicated that roscovitine reduced viral polymerase activity and bound specifically to the viral PB2cap protein by fluorescence polarization assay (FP) and surface plasmon resonance (SPR). Therefore, we believed roscovitine, as a PB2cap inhibitor, was a prospective antiviral agent to be developed as therapeutic treatment against influenza A virus infection.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Roscovitina/farmacologia , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Cães , Genoma Viral , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Inibidores de Proteínas Quinases/química , Roscovitina/química , Transcrição Gênica/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...