Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108689, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226157

RESUMO

High glucose has been proved to impair cognitive function in type 2 diabetes, but the underlying mechanisms remain elusive. Here, we found that high glucose increased transcription factors' SP1 O-GlcNAcylation in regulatory T (Treg) cells. Glycosylated SP1 further enhanced HDAC2 recruitment and histone deacetylation on Na+/Ca2+/Li+ exchanger (NCLX) promoter, which downregulated NCLX expression and led to mitochondrial calcium overload and oxidative damage, thereby promoting Treg cell dysfunction, M1 microglia polarization, and diabetes-associated cognitive impairment. Importantly, GLP-1 receptor agonist alleviated these deleterious effects via GLP-1-receptor-mediated upregulation of OGA and inhibition of SP1 O-GlcNAcylation in Treg cells. Our study highlighted a link between high-glucose-mediated SP1 O-GlcNAcylation and HDAC2/NCLX signaling in control of mitochondrial calcium concentrations in Treg cells. It also revealed a mechanism for linking Treg cell dysfunction and cognitive impairment in type 2 diabetes and provides an insight into the mechanism underlying the neuroprotective effects of GLP-1 receptor agonist.

2.
Metabolism ; 138: 155340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302455

RESUMO

BACKGROUND: Impairment of regulatory T (Treg) cells function is implicated in the pathogenesis of immune imbalance-mediated cognitive impairment. A complete understanding of whether and how this imbalance affect cognitive function in type 2 diabetes is lacking, and the driver affecting this imbalance remains unknown. METHODS: We examined the impact of enzymatic and non-enzymatic function of DPP4 on Treg cell impairment, microglia polarization and diabetes-associated cognitive defects and identified its underlying mechanism in type 2 diabetic patients with cognitive impairment and in db/db mice. RESULTS: We report that DPP4 binds to IGF2-R on Treg cell surface and activates PKA/SP1 signaling, which upregulate ERp29 expression and promote its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting mitochondria-associated ER membrane formation and mitochondria calcium overload in Tregs. This, in turn, impairs Tregs function and polarizes microglia toward a pro-inflammatory phenotype in the hippocampus and finally leads to neuroinflammation and cognitive impairment in type 2 diabetes. Importantly, inhibiting DPP4 enzymatic activity in type 2 diabetic patients or mutating DPP4 enzymatic active site in db/db mice did not reverse these changes. However, IGF-2R knockdown or blockade ameliorated these effects both in vivo and in vitro. CONCLUSION: These findings highlight the nonenzymatic role of DPP4 in impairing Tregs function, which may facilitate the design of novel immunotherapies for diabetes-associated cognitive impairment.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Dipeptidil Peptidase 4 , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Microglia/metabolismo , Linfócitos T Reguladores/metabolismo
3.
Cell Biochem Funct ; 38(5): 524-532, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32056246

RESUMO

G-quadruplexes form folded structures because of tandem repeats of guanine sequences in DNA or RNA. They adopt a variety of conformations, depending on many factors, including the type of loops and cations, the nucleotide strand number, and the main strand polarity of the G-quadruplex. Meanwhile, the different conformations of G-quadruplexes have certain influences on their biological functions, such as the inhibition of transcription, translation, and DNA replication. In addition, G-quadruplex binding proteins also affect the structure and function of G-quadruplexes. Some chemically synthesized G-quadruplex sequences have been shown to have biological activities. For example, bimolecular G-quadruplexes of AS1411 act as targets of exogenous drugs that inhibit the proliferation of malignant tumours. G-quadruplexes are also used as vehicles to deliver nanoparticles. Thus, it is important to identify the factors that influence G-quadruplex structures and maintain the stability of G-quadruplexes. Herein, we mainly discuss the factors influencing G-quadruplexes and the synthetic G-quadruplex, AS1411. SIGNIFICANCE OF THE STUDY: This review summarizes the factors that influence G-quadruplexes and the functions of the synthetic G-quadruplex, AS1411. It also discusses the use of G-quadruplexes for drug delivery in tumour therapy.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , DNA/efeitos dos fármacos , Oligodesoxirribonucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Quadruplex G/efeitos dos fármacos , Humanos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química
4.
PLoS One ; 14(11): e0224672, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710609

RESUMO

The Salt Overly Sensitive (SOS) pathway in Arabidopsis thaliana plays important roles in maintaining appropriate ion homeostasis in the cytoplasm and regulating plant tolerance to salinity. However, little is known about the details regarding SOS family genes in the tuber mustard crop (Brassica juncea var. tumida). Here, 12 BjSOS family genes were identified in the B. juncea var. tumida genome including two homologous genes of SOS1, one and three homologs of SOS2 and SOS3, two homologs of SOS4, two homologs of SOS5 and two homologs of SOS6, respectively. The results of conserved motif analysis showed that these SOS homologs contained similar protein structures. By analyzing the cis-elements in the promoters of those BjSOS genes, several hormone- and stress-related cis-elements were found. The results of gene expression analysis showed that the homologous genes were induced by abiotic stress and pathogen. These findings indicate that BjSOS genes play crucial roles in the plant response to biotic and abiotic stresses. This study provides valuable information for further investigations of BjSOS genes in tuber mustard.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mostardeira/genética , Biologia Computacional , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética
5.
Genes (Basel) ; 10(6)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226871

RESUMO

Abscisic acid (ABA) plays important roles in multiple physiological processes, such as plant response to stresses and plant development. The ABA receptors pyrabactin resistance (PYR)/ PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) play a crucial role in ABA perception and signaling. However, little is known about the details regarding PYL family genes in Brassica juncea var. tumida. Here, 25 PYL family genes were identified in B. juncea var. tumida genome, including BjuPYL3, BjuPYL4s, BjuPYL5s, BjuPYL6s, BjuPYL7s, BjuPYL8s, BjuPYL10s, BjuPYL11s, and BjuPYL13. The results of phylogenic analysis and gene structure showed that the PYL family genes performed similar gene characteristics. By analyzing cis-elements in the promoters of those BjuPYLs, several hormone and stress related cis-elements were found. The results of gene expression analysis showed that the ABA receptor homologous genes were induced by abiotic and biotic stress. The tissue-specific gene expression patterns of BjuPYLs also suggested those genes might regulate the stem swelling during plant growth. These findings indicate that BjuPYLs are involved in plant response to stresses and organ development. This study provides valuable information for further functional investigations of PYL family genes in B. juncea var. tumida.


Assuntos
Ácido Abscísico/metabolismo , Família Multigênica/genética , Mostardeira/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA