Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; : 1-13, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691351

RESUMO

CONTEXT: Spinal cord injury (SCI) is a potentially fatal neurological disease with severe complications and a high disability rate. An increasing number of animal experimental studies support the therapeutic effect of quercetin, which is a natural anti-inflammatory and antioxidant bioflavonoid. OBJECTIVE: This paper reviewed the therapeutic effect of quercetin on a rat SCI model and summarized the relevant mechanistic research. DATA SOURCES: PubMed, EMBASE, Web of Science, Science Direct, WanFang Data, SinoMed databases, the China National Knowledge Infrastructure, and the Vip Journal Integration Platform were searched from their inception to April 2023 for animal experiments applying quercetin to treat SCI. STUDY SELECTION: Based on the PICOS criteria, a total of 18 eligible studies were included, of which 14 were high quality. RESULTS: In this study, there was a gradual increase in effect based on the Basso, Beattie, and Bresnahan (BBB) score after three days (p < 0.0001). Furthermore, gender differences also appeared in the efficacy of quercetin; males performed better than females (p = 0.008). Quercetin was also associated with improved inclined plane test score (p = 0.008). In terms of biochemical indicators, meta-analysis showed that MDA (p < 0.0001) and MPO (p = 0.0002) were significantly reduced after quercetin administration compared with the control group, and SOD levels were increased (p = 0.004). Mechanistically, quercetin facilitates the inhibition of oxidative stress, inflammation, autophagy and apoptosis that occur after SCI. CONCLUSIONS: Generally, this systematic review suggests that quercetin has a neuroprotective effect on SCI.

2.
Neural Regen Res ; 18(3): 634-642, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018188

RESUMO

Chronic spinal cord compression (CSCC) is induced by disc herniation and other reasons, leading to movement and sensation dysfunction, with a serious impact on quality of life. Spontaneous disc herniation rarely occurs in rodents, and therefore establishing a chronic spinal cord compression (CSCC) animal model is of crucial importance to explore the pathogenesis and treatment of CSCC. The absence of secreted protein, acidic, and rich in cysteine (SPARC) leads to spontaneous intervertebral disc degeneration in mice, which resembles human disc degeneration. In this study, we evaluated whether SPARC-null mice may serve as an animal model for CSCC. We performed rod rotation test, pain threshold test, gait analysis, and Basso Mouse Scale score. Our results showed that the motor function of SPARC-null mice was weakened, and magnetic resonance images revealed compression at different spinal cord levels, particularly in the lumbar segments. Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes, activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype; it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway. Notably, these findings are characteristics of CSCC. Therefore, we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation.

3.
J Orthop Sci ; 28(5): 984-991, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36137918

RESUMO

BACKGROUND: The Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ) is a reliable and sensitive measure of disability to determine functional status and evaluate curative effects in low back pain, it has now been cross-cultural translated into many other languages and adapted for use in different countries. We aim to evaluate the translation procedures and measurement properties of cross-cultural adaptations of the JOABPEQ. METHODS: Studies related to cross-cultural adaptation of the JOABPEQ in a specific language/culture were searched in PubMed, Embase, CINAHL, SciELO, PsycINFO, SinoMed, and Web of Science from their inception to March 2022. The Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures and the Consensus-based Standards for the Selection of Health Status Measurement Instruments guideline were used for evaluation. RESULTS: Nine different versions of cross-cultural JOABPEQ adaptations in 8 different languages/cultures were included. The adaptation process was not strictly performed, such as standard forward translation and expert committee review were rarely reported. Content validity (8/9), floor and ceiling effects (3/9), reliability (4/9), and interpretability (6/9) were assessed in most of the adaptations, while agreement (2/9), responsiveness (2/9), and the internal consistency (2/9) were not. JOABPEQ can replace functional and quality of life score to reduce the burden of scientific research. CONCLUSION: We recommend Persian-Iranian, simplified Chinese-Chinese Mandarin, Thai and Gunaydin G's Turkish adaptations for application. The numerical pain rating scale/visual analogue scale in low back pain and lower extremities, as well as numbness in lower extremities could not be neglected in JOABPEQ adaptations.


Assuntos
Comparação Transcultural , Dor Lombar , Ortopedia , Humanos , Dor nas Costas , Avaliação da Deficiência , Dor Lombar/diagnóstico , Psicometria/métodos , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários
4.
Oxid Med Cell Longev ; 2022: 7650438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092162

RESUMO

Ischemic stroke, the most common type of stroke, can lead to a long-term disability with the limitation of effective therapeutic approaches. Ginsenoside-Rd (G-Rd) has been found as a neuroprotective agent. In order to investigate and discuss the neuroprotective function and underlying mechanism of G-Rd in experimental animal models following cerebral ischemic/reperfusion (I/R) injury, PubMed, Embase, SinoMed, and China National Knowledge Infrastructure were searched from their inception dates to May 2022, with no language restriction. Studies that G-Rd was used to treat cerebral I/R damage in vivo were selected. A total of 18 articles were included in this paper, and it was showed that after cerebral I/R damage, G-Rd administration could significantly attenuate infarct volume (19 studies, SMD = -1.75 [-2.21 to - 1.30], P < 0.00001). Subgroup analysis concluded that G-Rd at the moderate doses of >10- <50 mg/kg reduced the infarct volume to the greatest extent, and increasing the dose beyond 50 mg/kg did not produce better results. The neuroprotective effect of G-Rd was not affected by other factors, such as the animal species, the order of administration, and the ischemia time. In comparison with the control group, G-Rd administration could improve neurological recovery (lower score means better recovery: 14 studies, SMD = -1.50 [-2.00 to - 1.00], P < 0.00001; higher score means better recovery: 8 studies, SMD = 1.57 [0.93 to 2.21], P < 0.00001). In addition, this review suggested that G-Rd in vivo can antagonize the reduced oxidative stress, regulate Ca2+, and inhibit inflammatory, resistance to apoptosis, and antipyroptosis on cerebral I/R damage. Collectively, G-Rd is a promising natural neuroprotective agent on cerebral I/R injury with unique advantages and a clear mechanism of action. More clinical randomized, blind-controlled trials are also needed to confirm the neuroprotective effect of G-Rd on cerebral I/R injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Ginsenosídeos , Infarto/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...