Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
AMB Express ; 14(1): 37, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622373

RESUMO

This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.

2.
J Plant Physiol ; 297: 154256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657393

RESUMO

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Assuntos
Adonis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Adonis/genética , Adonis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
3.
Anim Biotechnol ; 35(1): 2258166, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729465

RESUMO

In this study, we evaluated the copy number variation in the genomes of two groups of Beichuan-white goat populations with large differences in litter size by FST method, and identified 1739 genes and 485 missense mutations in the genes subject to positive selection. Through functional enrichment, ITGAV, LRP4, CDH23, TPRN, RYR2 and CELSR1 genes, involved in embryonic morphogenesis, were essential for litter size trait, which received intensive attention. In addition, some mutation sites of these genes have been proposed (ITGAV: c.38C > T; TPRN: c.133A > T, c.1192A > G, c.1250A > C; CELSR1: c.7640T > C), whose allele frequencies were significantly changed in the high fecundity goat group. Besides, we found that new mutations at these sites altered the hydrophilicity and 3D structure of the protein. Candidate genes related to litter size in this study and their missense mutation sites were identified. These candidate genes are helpful to understand the genetic mechanism of fecundity in Beichuan white goat, and have important significance for future goat breeding.


Assuntos
Variações do Número de Cópias de DNA , Cabras , Gravidez , Feminino , Animais , Cabras/genética , Variações do Número de Cópias de DNA/genética , Genoma/genética , Mutação/genética , Análise de Sequência de DNA , Tamanho da Ninhada de Vivíparos/genética
4.
Plant Physiol Biochem ; 206: 108216, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016370

RESUMO

Trace metals have relatively high density and high toxicity at low concentrations. Willow (Salix genus) is an excellent phytoremediation species for soil contaminated by trace metal ions. This study identified a cell number regulator (CNR) gene family member in Salix linearistipularis exhibiting strong metal ion resistance: SlCNR8. SlCNR8 expression was affected by various metal ions, including cadmium (Cd), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn). SlCNR8 overexpression enhanced Cd, Zn, Cu, and Fe resistance in transgenic poplar seedlings (84K) compared with the wild-type (WT). Moreover, transgenic poplar seedlings showed lower root Cd uptake and less Cd accumulation than WT under Cd stress. SlCNR8 was primarily localized to the nucleus and the plasma membrane-like cell periphery. Furthermore, SlCNR8 had transcriptional activation activity in yeast. The transcript levels of multiple metal ion transporters were altered in the roots of transgenic poplar seedlings compared to WT roots under Cd stress. These results suggest that SlCNR8 may enhance Cd resistance in transgenic poplar by reducing Cd uptake and accumulation. This may be related to altered transcription levels of other transporters or to itself. Our study suggests that SlCNR8 can be used as a candidate gene for genetic improvement of phytostabilisation of trace metals by genetic engineering.


Assuntos
Salix , Poluentes do Solo , Cádmio/metabolismo , Salix/genética , Salix/metabolismo , Zinco/metabolismo , Biodegradação Ambiental , Plântula/metabolismo , Contagem de Células , Íons/metabolismo , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo
5.
Plant Cell Rep ; 42(11): 1777-1789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740037

RESUMO

KEY MESSAGE: Populus euphratica PePCR2 increases Cd resistance by functioning as a Cd extrusion pump and by mediating the expression of genes encoding other transporters. Cadmium (Cd) is a non-essential, toxic metal that negatively affects plant growth. Plant cadmium resistance (PCR) proteins play key roles in the response to heavy metal stress. In this study, we isolated the gene PePCR2 encoding a plant PCR from Populus euphratica. PePCR2 gene transcription was induced by Cd, and its transcript level peaked at 24 h after exposure, at a level approximately 18-fold higher than that at 0 h. The PePCR2 protein was localized to the plasma membrane. Compared with yeast cells harboring the empty vector, yeast cells expressing PePCR2 showed enhanced Cd tolerance and a lower Cd content. Compared with wild-type (WT) plants, poplar overexpressing PePCR2 showed higher Cd resistance. Net Cd2+ efflux measurements showed that Cd2+ efflux from the roots was 1.5 times higher in the PePCR2-overexpressing plants than in WT plants. Furthermore, compared with WT plants, the PePCR2-overexpressing plants showed increased transcript levels of ABCG29, HMA5, PDR2, YSL7, and ZIP1 and decreased transcript levels of NRAMP6, YSL3, and ZIP11 upon exposure to Cd. These data show that PePCR2 increased Cd resistance by acting as a Cd extrusion pump and/or by regulating other Cd2+ transporters to decrease Cd toxicity in the cytosol. The results of this study identify a novel plant gene with potential applications in Cd removal, and provide a theoretical basis for reducing Cd toxicity and protecting food safety.

6.
Plant Physiol Biochem ; 203: 108043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734271

RESUMO

Toxic heavy metals originating from human activities have caused irreversible harm to the environment. Toxic heavy metal ions absorbed by crop plants can seriously threaten human health. Therefore, decreasing heavy metal contents in crop plants is an urgent need. The plant cadmium resistance protein (PCR) is a heavy metal ion transporter. In this study, PePCR10 was cloned from Populus euphratica. Bioinformatics analyses revealed its transmembrane structure and gene sequence motifs. The transcript profile of PePCR10 was analyzed by RT-qPCR, and its transcript levels increased under toxic heavy metal (cadmium, lead, aluminum) treatments. Subcellular localization analyses in tobacco cells revealed that PePCR10 localizes at the plasma membrane. Compared with wild type (WT), PePCR10-overexpressing lines showed significantly higher values for plant height, root length, fresh weight, and dry weight under heavy metal stress. Electrolyte leakage, nitroblue tetrazolium staining, and chlorophyll fluorescence analyses indicated that Cd/Al tolerance in PePCR10-overexpressing lines was stronger than that in WT. The Cd/Al contents were lower in the PePCR10-overexpressing lines than in WT under Cd/Al stress. Our results show that PePCR10 can reduce the heavy metal content in poplar and enhance its Cd/Al tolerance. Hence, PePCR10 is a candidate genetic resource for effectively reducing heavy metal accumulation in crops.

7.
FASEB J ; 37(9): e23158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615181

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. NAFLD has the potential to cause significant liver damage in many patients because it can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis, which substantially increases disease morbidity and mortality. Despite the key role of innate immunity in the disease progression, the underlying molecular and pathogenic mechanisms remain to be elucidated. RNase L is a key enzyme in interferon action against viral infection and displays pleiotropic biological functions such as control of cell proliferation, apoptosis, and autophagy. Recent studies have demonstrated that RNase L is involved in innate immunity. In this study, we revealed that RNase L contributed to the development of NAFLD, which further progressed to NASH in a time-dependent fashion after RNase L wild-type (WT) and knockout mice were fed with a high-fat and high-cholesterol diet. RNase L WT mice showed significantly more severe NASH, evidenced by widespread macro-vesicular steatosis, hepatocyte ballooning degeneration, inflammation, and fibrosis, although physiological and biochemical data indicated that both types of mice developed obesity, hyperglycemia, hypercholesterolemia, dysfunction of the liver, and systemic inflammation at different extents. Further investigation demonstrated that RNase L was responsible for the expression of some key genes in lipid metabolism, inflammation, and fibrosis signaling. Taken together, our results suggest that a novel therapeutic intervention for NAFLD may be developed based on regulating the expression and activity of RNase L.


Assuntos
Hipercolesterolemia , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Endorribonucleases/genética , Inflamação , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Ribonucleases/metabolismo
8.
Tree Physiol ; 43(11): 1950-1963, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37615479

RESUMO

Contamination of soils with toxic heavy metals is a major environmental problem. Growing crop plants that can promote the efflux of heavy metals is an effective strategy in contaminated soils. The plant cadmium resistance (PCR) protein is involved in the translocation of heavy metals, specifically zinc and cadmium (Cd). In this study, yeast expressing Populus euphratica PCR3 (PePCR3) showed enhanced Cd tolerance and decreased Cd accumulation under Cd treatment. Real-time quantitative PCR analyses revealed up-regulation of PePCR3 in poplar seedlings under Cd stress. Localization analysis revealed that PePCR3 localizes at the plasma membrane. The plant growth and biomass were greater in PePCR3-overexpressing (OE) transgenic hybrid poplar lines than in wild type (WT). Physiological parameters analyses indicated that, compared with WT, PePCR3-OE transgenic lines were more tolerant to Cd. In addition, more Cd was excreted in the roots of the PePCR3-OE transgenic lines than in those of WT, but the remaining Cd in transgenic lines was more translocated into the stems and leaves. Eight genes encoding transporters showed increased transcript levels in PePCR3-OE transgenic lines under Cd treatment, implying that PePCR3 interacts with other transporters to translocate Cd. Thus, PePCR3 may be an important genetic resource for generating new lines that can enhance Cd translocation to phytoremediation in contaminated soils.


Assuntos
Metais Pesados , Populus , Cádmio/metabolismo , Populus/metabolismo , Metais Pesados/metabolismo , Zinco/metabolismo , Saccharomyces cerevisiae , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Biodegradação Ambiental , Solo
9.
Plant Cell Rep ; 42(9): 1503-1516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452219

RESUMO

KEY MESSAGE: We introduced the candidate gene DsHSP70 into Arabidopsis thaliana, resulting in male gametophyte sterility and abnormal degeneration of sepals and petals. Cytoplasmic male sterility (CMS) is a useful tool for hybrid production. However, the regulatory mechanism of CMS in Dianthus spiculifolius remains unclear. In this study, we investigated whether male-sterile line of D. spiculifolius has a malformed tapetum and fails to produce normal fertile pollen. RNA sequencing technology was used to compare the gene expression patterns of the D. spiculifolius male-sterile line and its male fertility maintainer line during anther development. A total of 12,365 differentially expressed genes (DEGs) were identified, among which 1765 were commonly expressed in the S1, S2 and S3 stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these DEGs were mainly involved in oxidation-reduction processes, signal transduction and programmed cell death. Additionally, weighted correlation network analysis (WGCNA) showed that three modules may be related to male sterility. A putative regulatory pathway for the male sterility traits was constructed based on the reproductive development network. After introducing the candidate DsHSP70 gene into Arabidopsis thaliana, we found that overexpressing plants showed anther abortion and shorter filaments, and accompanied by abnormal degeneration of sepals and petals. In summary, our results identified potential candidate genes and pathways related to CMS in D. spiculifolius, providing new insights for further research on the mechanism of male sterility.


Assuntos
Arabidopsis , Dianthus , Infertilidade Masculina , Masculino , Humanos , Dianthus/genética , Infertilidade das Plantas/genética , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Flores/genética
10.
Anim Biotechnol ; 34(8): 4135-4146, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37039778

RESUMO

Colostrum contains large number of nutrients that promote the growth, differentiation, and biological functions for goat kids early somatic cells, which is crucial to meet the nutritional demands, immune function, and the health of goat kids later growth. Great attention has been given not only to nutritional ingredient differences between colostrum and normal milk, but also to function differences, and their effect on the physical and sensory properties of goat kid's growth performance and health status. This paper reviews the research progress of goat colostrum in recent years, mainly including the colostrum yield, components, i.e., proteins, lactose, and immunoglobulin, as well as the influence factor, i.e., number of lactation and littler size, nutrition during the gestation, and breeding environment. In addition, this review aims to summarize the synthesis and secretion mechanisms, and the digestion and absorption mechanism of goat colostrum. We conclude that even though the composition and physicochemical properties of goat colostrum are highly dynamic and variable, and the digestion and absorption mechanism has not been made fully clear until now, direct feed microbial (DFM) may be a promising alternative for improving the quality of colostrum that should be further explored for their practical usage.


Assuntos
Colostro , Cabras , Gravidez , Feminino , Animais , Colostro/química , Colostro/metabolismo , Leite/química , Lactação/fisiologia
11.
Chemosphere ; 318: 137967, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731661

RESUMO

Decreases in microelement contents and increases in toxic element levels seriously affect crop growth and human health. Thus, improving the elemental content of food crops is an important environmental issue for enhancing crop production and quality. Previous research showed that metal tolerance protein 1 (MTP1) is localized at the vacuole membrane, wherein it mediates the translocation of heavy metal ions. Therefore, LmMTP1 was isolated from annual ryegrass (Lolium multiflorum). Real-time quantitative PCR analyses revealed LmMTP1 expression increased significantly in the roots after Zn, Co, and Cd treatments. Confocal microscopy images indicated LmMTP1 was localized at the vacuole membrane. The expression of LmMTP1 in transgenic yeast and rice resulted in increased Zn, Co, and Cd tolerance. The examination of heavy metal contents detected increases in the Zn and Co contents, but decreases in the Cd contents, of yeast and rice. Moreover, the grains of LmMTP1-expressing transgenic rice had higher Zn/Co contents and lower Cd contents than wild-type rice grains. These results imply that LmMTP1 influences Zn, Co, and Cd tolerance and accumulation. Furthermore, LmMTP1 might be a novel biofortification-related candidate gene useful for improving the storage of essential elements and eliminating toxic heavy metals from crops.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Humanos , Biofortificação , Cádmio/análise , Produtos Agrícolas/metabolismo , Metais Pesados/análise , Oryza/metabolismo , Saccharomyces cerevisiae/metabolismo , Solo , Poluentes do Solo/análise
12.
Int J Biol Macromol ; 235: 123838, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842747

RESUMO

Rhodomonas salina, Cryptophyta, Rhodomonas genus, is a valuable source for live feed in aquaculture and for the production of phycoerythrin (PE). In this study, PE was extracted from Rhodomonas salina and characterized as having a molecular weight of approximately 24 kDa, an absorbance at 545 nm, and a purity of up to 6.61 (which meets reagent grade requirements with an OD545/OD280 ratio >4). The effects of PE on anticancer activity and its underlying mechanisms were evaluated to assess the immunomodulatory potential on the human lung cancer A549 cell line. Biochemical assays and western blot analysis were applied to confirm the immune mechanisms. The results showed that after 24 h of exposure to PE, the proliferation of A549 cells was significantly and dose-dependently decreased. PE also caused the generation of reactive oxygen species (ROS) and a decrease in mitochondrial membrane potential (MMP). The further results showed that PE can remarkably enhance the protein levels of cleaved caspase-3 and p53. Simultaneously, the BCL-2 family was also affected and had some changes, such as the dramatically enhance of Bim and Bak and the decrease of Bcl-2 level. However, it is interesting to note that there was no apparent alteration in Bax expression during the experiment. Furthermore, the biological mechanism for the potential of PE to induce apoptosis showed that the ERK/Bak and the JNK/caspase-3 signaling pathway were activated. This study provides evidence that the anticancer activity of PE in Rhodomonas salina may have potential for preventing cancer and serving as a novel immunostimulant in the pharmaceutical industry.


Assuntos
Criptófitas , Ficoeritrina , Humanos , Células A549 , Caspase 3/metabolismo , Ficoeritrina/farmacologia , Criptófitas/metabolismo , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Anim Biotechnol ; 34(4): 1662-1672, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34915819

RESUMO

This study aimed to evaluate the effect of the number of lactations and litter size on the chemical composition, immunoglobulins, and cytokines of goat colostrum. The experiment was conducted at the Animal Research Base, Mianyang Academy of Agricultural Sciences, from February to March 2021. After delivery, 48 colostrum samples were obtained every 24 h by manual milking from both udders. The contents of colostrum proteins, IgA, and IgM increased markedly up to 48 h postpartum, reaching 250 and 1250 µg/mL, respectively (p < 0.01 compared with 0 h). However, the total Ig and IgG contents dropped quickly at 48 h postpartum to around 4.5 and 6 mg/mL, respectively, and continued to do so until 96 h postpartum (p < 0.01). As for litter size, the colostrum DM, fat, total Ig, IgG, INF-γ, and IL-2 of twin-birth goats were higher than those of single-birth goats at 0 h postpartum. Moreover, the colostrum of multiparous goats contained higher total Ig, IgA, IgG, and INF-γ concentrations than that of primiparous goats at 0 h postpartum (p < 0.01). However, the colostrum INF-α and IL-5 contents of multiparous goats were lower than those of primiparous goats at 0 h postpartum (p < 0.05). Available information indicates that colostrum secretion takes place until 48 h postpartum and that the effect of litter size and lactation number on colostrum quality is observed at 0 h postpartum.


Assuntos
Colostro , Cabras , Gravidez , Feminino , Animais , Colostro/química , Tamanho da Ninhada de Vivíparos , Imunoglobulina G/metabolismo , Lactação , Imunoglobulina A/análise , Imunoglobulina A/metabolismo , Leite/química
14.
Anim Biotechnol ; 34(4): 1673-1680, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34904515

RESUMO

The effect of direct-feed microbial (DFM) treatment on body weight, serum biochemical indexes, serum immunoglobulins, and serum cytokines was studied. The study was a completely randomized design with 20 growing females Beichuan white goats, weighing 25.11 ± 1.96 kg, divided into two groups of 10 goats per treatment. Goats were offered (1) 10 mL saline solution (Control group) (2) or 10 mL microbials solution (DFM group) on days 0 and 7 for two times. No effect on final body weight and body size was observed between DFM and control group (p > 0.05). DFM treatment had greater serum total protein, globulin, and albumin/globulin ratio than the control treatment (p < 0.05). The concentrations of IgA, IgG, IgM, INF-γ, and IL-2 in DFM group were significantly higher than those in the control group on days 7, 14, and 21 (p < 0.05), and the highest content was detected on day 14 of the experiment. The concentrations of IgA, IgG, IgM, IL-2, INF-γ, INF-α, IL-4, and IL-5 in DFM group on day 14 were higher than those on day 0 (p < 0.05). In conclusion, DFM enhanced serum immunoglobulins and cytokines without affecting body weight, body size, and normal serum metabolism.


Assuntos
Globulinas , Probióticos , Feminino , Animais , Dieta/veterinária , Cabras , Interleucina-2 , Citocinas , Peso Corporal , Ração Animal/análise , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M
15.
Anim Biotechnol ; 34(4): 1492-1504, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35196466

RESUMO

This study focused on the changes in the composition and immune evolution in milk from birth to 144 h postpartum and the genes associated with the colostrum yield of Hu sheep. Twelve Hu sheep, which were bred carefully under animal health standards and have a litter size of two kids and similar gestation length (149 ± 1 days), were used. Lambs were transferred into their own cots to avoid interference. The compositional content (i.e., fat, protein, and lactose) and some other properties, including daily colostrum yield, DM, and SNF, were determined. In addition, immunity molecules (IgG, IgA, and IgM concentrations) received remarkable attention. The DM, SNF, fat, and protein contents were higher in the first days postpartum and then dropped quickly from the time of birth to 144 h postpartum. However, the lactose content displayed an increasing pattern and reached normal milk percentage at 48 h. The highest IgG (103.17 mg/mL), IgA (352.82 µg/mL), and IgM (2.79 mg/mL) colostrum concentrations were observed at partum, decreased quickly, and finally stabilized. The change law of concentration of IgA and IgM in colostrum are the same with IgG. Furthermore, the whole-genome resequencing was performed, and a missense variant locus in the SRC gene and two missense locus variants in the HIF1A gene were significantly associated with the colostrum yield of sheep by using the whole-genome selection signal detection analysis. In conclusions, colostrum contains abundant nutrients especially immunoglobulin, and the HIF1A gene may be used as candidate genes for colostrum yield, which has important information as a basic knowledge for the Hu sheep breeding program.


Assuntos
Colostro , Lactose , Gravidez , Feminino , Ovinos/genética , Animais , Colostro/química , Lactose/metabolismo , Mutação de Sentido Incorreto , Leite/química , Carneiro Doméstico , Imunoglobulina G/metabolismo , Imunoglobulina M/análise , Imunoglobulina A/metabolismo , Animais Recém-Nascidos
16.
Ecotoxicol Environ Saf ; 245: 114116, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174317

RESUMO

Phytoextraction in phytoremediation is one of the environmentally friendly methods used for restoring soils contaminated by heavy metals (HMs). The screening and identification of HM-resistant plants and their regulatory genes associated with HM ion transport are the key research aims in this field. In this study, a plant cadmium (Cd) resistance (PCR) gene family member, SlPCR6, was identified in roots of Salix linearistipularis, which exhibits strong HM resistance. The results revealed that SlPCR6 expression was induced in S. linearistipularis roots in response to Cd stress. Furthermore, SlPCR6 was mainly localized on the plasma membrane. Compared with the wild type, SlPCR6 overexpression reduced the Cd and copper (Cu) contents in the transgenic poplar (84 K) and increased its Cd and Cu resistance. The roots of transgenic poplar seedlings had lower net Cd and Cu uptake rates than wild type roots. Further investigation revealed that the transcript levels of multiple HM ion transporters were not significantly different between the roots of the wild type and those of the transgenic poplar. These results suggest that SlPCR6 is directly involved in Cd and Cu transport in S. linearistipularis roots. Therefore, SlPCR6 can serve as a candidate gene to improve the phytoextraction of the HMs Cd and Cu through genetic engineering.


Assuntos
Metais Pesados , Populus , Salix , Poluentes do Solo , Biodegradação Ambiental , Cádmio/metabolismo , Cobre/análise , Metais Pesados/análise , Raízes de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Salix/genética , Salix/metabolismo , Solo , Poluentes do Solo/análise
17.
Entropy (Basel) ; 24(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885233

RESUMO

Semantic-rich speech emotion recognition has a high degree of popularity in a range of areas. Speech emotion recognition aims to recognize human emotional states from utterances containing both acoustic and linguistic information. Since both textual and audio patterns play essential roles in speech emotion recognition (SER) tasks, various works have proposed novel modality fusing methods to exploit text and audio signals effectively. However, most of the high performance of existing models is dependent on a great number of learnable parameters, and they can only work well on data with fixed length. Therefore, minimizing computational overhead and improving generalization to unseen data with various lengths while maintaining a certain level of recognition accuracy is an urgent application problem. In this paper, we propose LGCCT, a light gated and crossed complementation transformer for multimodal speech emotion recognition. First, our model is capable of fusing modality information efficiently. Specifically, the acoustic features are extracted by CNN-BiLSTM while the textual features are extracted by BiLSTM. The modality-fused representation is then generated by the cross-attention module. We apply the gate-control mechanism to achieve the balanced integration of the original modality representation and the modality-fused representation. Second, the degree of attention focus can be considered, as the uncertainty and the entropy of the same token should converge to the same value independent of the length. To improve the generalization of the model to various testing-sequence lengths, we adopt the length-scaled dot product to calculate the attention score, which can be interpreted from a theoretical view of entropy. The operation of the length-scaled dot product is cheap but effective. Experiments are conducted on the benchmark dataset CMU-MOSEI. Compared to the baseline models, our model achieves an 81.0% F1 score with only 0.432 M parameters, showing an improvement in the balance between performance and the number of parameters. Moreover, the ablation study signifies the effectiveness of our model and its scalability to various input-sequence lengths, wherein the relative improvement is almost 20% of the baseline without a length-scaled dot product.

18.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897742

RESUMO

CCCH-type zinc finger proteins (ZFP) are a large family of proteins that play various important roles in plant growth and development; however, the functions of most proteins in this family are uncharacterized. In this study, a CCCH-type ZFP, AaZFP3, was identified in the floral organ of Adonis amurensis. Quantitative real-time PCR (qPCR) analysis revealed that AaZFP3 was widely expressed in the flowers of A.amurensis. Subcellular localization analysis showed that the AaZFP3 protein was mainly localized to the cytoplasm in tobacco and Arabidopsis. Furthermore, the overexpression of AaZFP3 promoted early flowering in Arabidopsis under both normal and relatively low-temperature conditions. RNA-sequencing and qPCR analyses revealed that the expression of multiple key flowering-time genes was altered in transgenic Arabidopsis overexpressing AaZFP3 compared to wild-type. Of these genes, FLOWERING LOCUS T (AtFT) expression was most significantly up-regulated, whereas FLOWERING LOCUS C (AtFLC) was significantly down-regulated. These results suggest that the overexpression of AaZFP3 promotes early flowering in Arabidopsis by affecting the expression of flowering-time genes. Overall, our study indicates that AaZFP3 may be involved in flowering regulation in A.amurensis and may represent an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Assuntos
Adonis , Proteínas de Arabidopsis , Arabidopsis , Adonis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Dedos de Zinco/genética
19.
J Plant Physiol ; 275: 153762, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35820348

RESUMO

Cuticular wax plays a role in plant responses to environmental stresses. To understand the contribution of cuticular wax to plant responses to low-temperature stress, the morphological and physiological responses of a Dianthus spiculifolius high-wax (HW) mutant and wild type (WT) were compared. Under low-temperature stress (0 and -10 °C), HW plants showed a lower mortality rate and electrolyte leakage (El) than that WT plants. In plants treated with low-temperature stress (0 and -10 °C), HW mutant leaves exhibited higher soluble sugar and free proline contents and lower malondialdehyde contents than those WT leaves. The photosynthetic capacity, net photosynthetic rate, stomatal conductance, and maximal photochemical efficiency of photosystem II in HW mutant leaves were the least inhibited by low temperature than those in WT leaves. The dewaxing experiments showed no significant difference in the phenotype and El between the dewaxed-treated HW mutant and WT leaves under low-temperatures stress, indicating that cuticular wax causes differences in resistance to low-temperatures between HW and WT. Principal component analysis and the membership function value of the physiological data showed that the average membership value of the HW mutant was greater than that in WT. In general, the results indicated that high cuticular wax contributes positively to the response to low-temperature stress by D. spiculifolius.


Assuntos
Dianthus , Temperatura Baixa , Dianthus/genética , Secas , Folhas de Planta/genética , Estresse Fisiológico/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...