Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
ACS Nano ; 12(6): 5888-5894, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29750500

RESUMO

Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g-1, a rate capability, and good cycling stability (∼83% capacitance retention after 10,000 cycles). This method was also extended to the preparation of polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.

5.
ChemSusChem ; 10(15): 3098-3104, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28661581

RESUMO

Although organic small molecule spiro-OMeTAD is widely used as a hole-transport material in perovskite solar cells, its limited electric conductivity poses a bottleneck in the efficiency improvement of perovskite solar cells. Here, a low-cost and easy-fabrication technique is developed to enhance the conductivity and hole-extraction ability of spiro-OMeTAD by doping it with commercially available benzoyl peroxide (BPO). The experimental results show that the conductivity increases several orders of magnitude, from 6.2×10-6  S cm-1 for the pristine spiro-OMeTAD to 1.1×10-3  S cm-1 at 5 % BPO doping and to 2.4×10-2  S cm-1 at 15 % BPO doping, which considerably outperform the conductivity of 4.62×10-4  S cm-1 for the currently used oxygen-doped spiro-OMeTAD. The fluorescence spectra suggest that the BPO-doped spiro-OMeTAD-OMeTAD layer is able to efficiently extract holes from CH3 NH3 PbI3 and thus greatly enhances the charge transfer. The BPO-doped spiro-OMeTAD is used in the fabrication of perovskite solar cells, which exhibit enhancement in the power conversion efficiency.


Assuntos
Peróxido de Benzoíla/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Fluorenos/química , Óxidos/química , Energia Solar , Compostos de Espiro/química , Titânio/química , Eletroquímica
6.
Adv Mater ; 28(46): 10211-10216, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27723115

RESUMO

Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...