Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-2): 025213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491640

RESUMO

This paper presents a numeric study of the dynamic stabilization of the ablative Rayleigh-Taylor instability (ARTI) in the presence of a temporally modulated laser pulse. The results show that the specially modulated laser produces a dynamically stabilized configuration near the ablation front. The physical features of the relevant laser-driven parameters in the unperturbed ablative flows have been analyzed to reveal the inherent stability mechanism underlying the dynamically stabilized configuration. A single-mode ARTI for the modulated laser pulse is first compared with that of the unmodulated laser pulse. The results show that the modulated laser stabilizes the surface perturbations and reduces the linear growth rate and enhancement of the cutoff wavelength. For multimode perturbations, the dynamic stabilization effect of the modulated laser pulse contributes to suppress the small-scale structure and reduce the width of the mixing layer. Moreover, the results show that the stabilization effect of the modulated laser pulse decreases as the maximum wavelength increases.

2.
Phys Rev Lett ; 131(14): 145003, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862653

RESUMO

We propose exploiting the superluminal plasma wake for coherent Cherenkov radiation by injecting a relativistic electron beam (REB) into a plasma with a slowly varying density up-ramp. Using three-dimensional particle-in-cell and far-field time-domain radiation simulations, we show that an isolated subcycle pulse is coherently emitted towards the Cherenkov angle by bubble-sheath electrons successively at the rear of the REB-induced superluminal plasma wake. A theoretical model based on a superluminal current dipole has been developed to interpret such coherent radiation, and agrees well with the simulation results. This radiation has ultrashort attosecond-scale duration and high intensity, and exhibits excellent directionality with ultralow angular divergence and stable carrier envelope phase. Its intensity increases with the square of the propagation length and its central frequency can be easily tuned over a wide range, from the far infrared to the ultraviolet.

3.
Phys Rev Lett ; 130(18): 185001, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204906

RESUMO

Propagation of high-current relativistic electron beam (REB) in plasma is relevant to many high-energy astrophysical phenomena as well as applications based on high-intensity lasers and charged-particle beams. Here, we report a new regime of beam-plasma interaction arising from REB propagation in medium with fine structures. In this regime, the REB cascades into thin branches with local density a hundred times the initial value and deposits its energy 2 orders of magnitude more efficiently than that in homogeneous plasma, where REB branching does not occur, of similar average density. Such beam branching can be attributed to successive weak scatterings of the beam electrons by the unevenly distributed magnetic fields induced by the local return currents in the skeletons of the porous medium. Results from a model for the excitation conditions and location of the first branching point with respect to the medium and beam parameters agree well with that from pore-resolved particle-in-cell simulations.

4.
Phys Rev Lett ; 127(24): 245002, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951809

RESUMO

Transport of high-current relativistic electron beams in dense plasmas is of interest in many areas of research. However, so far the mechanism of such beam-plasma interaction is still not well understood due to the appearance of small time- and space-scale effects. Here we identify a new regime of electron beam transport in solid-density plasma, where kinetic effects that develop on small time and space scales play a dominant role. Our three-dimensional particle-in-cell simulations show that in this regime the electron beam can evolve into layered short microelectron bunches when collisions are relatively weak. The phenomenon is attributed to a secondary instability, on the space- and timescales of the electron skin depth (tens of nanometers) and few femtoseconds of strong electrostatic modulation of the microelectron current filaments formed by Weibel-like instability of the original electron beam. Analytical analysis on the amplitude, scale length, and excitation condition of the self-generated electrostatic fields is clearly validated by the simulations.

5.
Phys Rev E ; 104(2-2): 025204, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525564

RESUMO

Inverse magnetic energy transfer from small to large scales is a key physical process for the origin of large-scale strong magnetic fields in the universe. However, so far, from the magnetohydrodynamic perspective, the onset of inverse transfer is still not fully understood, especially the underlying dynamics. Here, we use both two-dimensional and three-dimensional particle-in-cell simulations to show the self-consistent dynamics of inverse transfer in collisionless decaying turbulent plasmas. Using the space filtering technique in theory and numerical analyses, we identify magnetic reconnection as the onset and fundamental drive for inverse transfer, where, specifically, the subscale electromotive force driven by magnetic reconnection do work on the large-scale magnetic field, resulting in energy transfer from small to large scales. The mechanism is also verified by the strong correlations in locations and characteristic scales between inverse transfer and magnetic reconnection.

6.
Phys Rev Lett ; 120(19): 195001, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799245

RESUMO

We present the first experimental evidence supported by simulations of kinetic effects launched in the interpenetration layer between the laser-driven hohlraum plasma bubbles and the corona plasma of the compressed pellet at the Shenguang-III prototype laser facility. Solid plastic capsules were coated with carbon-deuterium layers; as the implosion neutron yield is quenched, DD fusion yield from the corona plasma provides a direct measure of the kinetic effects inside the hohlraum. An anomalous large energy spread of the DD neutron signal (∼282 keV) and anomalous scaling of the neutron yield with the thickness of the carbon-deuterium layers cannot be explained by the hydrodynamic mechanisms. Instead, these results can be attributed to kinetic shocks that arise in the hohlraum-wall-ablator interpenetration region, which result in efficient acceleration of the deuterons (∼28.8 J, 0.45% of the total input laser energy). These studies provide novel insight into the interactions and dynamics of a vacuum hohlraum and near-vacuum hohlraum.

7.
Phys Rev E ; 95(5-1): 053205, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618622

RESUMO

It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time t_{a} when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude a_{L}, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude a_{L}^{2} for a fixed parameter of n_{e}/n_{c}a_{L}. These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

8.
Phys Rev Lett ; 118(20): 204802, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581776

RESUMO

A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20 nC) can be obtained at intensity 10^{22} W/cm^{2}.

9.
Phys Rev E ; 95(4-1): 043207, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505773

RESUMO

The hosing processes of a relativistic laser pulse, electron acceleration, and betatron radiation in a parabolic plasma channel are investigated in the direct laser acceleration regime. It is shown that the laser hosing instability would result in the generation of a randomly directed off-axis electron beam and radiation source with a large divergence angle. While employing a preformed parabolic plasma channel, the restoring force provided by the plasma channel would correct the perturbed laser wave front and thus suppress the hosing instability. As a result, the accelerated electron beam and the emitted photons are well guided and concentrated along the channel axis. The employment of a proper plasma density channel can stably guide the relativistically intense laser pulse and greatly improve the properties of the electron beam and radiation source. This scheme is of great interest for the generation of high quality electron beams and radiation sources.

10.
Sci Rep ; 7: 45031, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338010

RESUMO

We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 1025 photons/s/mm2/mrad2/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 1023 W/cm2.

11.
Phys Rev E ; 95(1-1): 013201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208417

RESUMO

Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ∼3×10^{18}W/cm^{2} and pulse duration ∼10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ∼0.15 mJ (∼58 GV/m peak electric field) THz radiation is ∼30^{∘}. The conversion efficiency of laser-to-THz energy is ∼0.75%. A simple analytical model that well reproduces the simulated result is presented.

12.
Phys Rev E ; 94(3-1): 033202, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739750

RESUMO

Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

13.
Phys Rev E ; 93(6): 063203, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415373

RESUMO

Betatron radiation from direct-laser-accelerated electrons is characterized analytically and numerically. It is shown here that the electron dynamics is strongly dependent on a self-similar parameter S(≡n_{e}/n_{c}a_{0}). Both the electron transverse momentum and energy are proportional to the normalized amplitude of laser field (a_{0}) for a fixed value of S. As a result, the total number of radiated photons scales as a_{0}^{2}/sqrt[S] and the energy conversion efficiency of photons from the accelerated electrons scales as a_{0}^{3}/S. The particle-in-cell simulations agree well with the analytical scalings. It is suggested that a tunable high-energy and high-flux radiation source can be achieved by exploiting this regime.

14.
Phys Rev E ; 93: 043207, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176418

RESUMO

Energetic electron acceleration processes in a plasma hollow tube irradiated by an ultraintense laser pulse are investigated. It is found that the longitudinal component of the laser field is much enhanced when a linear polarized Gaussian laser pulse propagates through the plasma tube. This longitudinal field is of π/2 phase shift relative to the transverse electric field and has a π phase interval between its upper and lower parts. The electrons in the plasma tube are first pulled out by the transverse electric field and then trapped by the longitudinal electric field. The trapped electrons can further be accelerated to higher energy in the presence of the longitudinal electric field. This acceleration mechanism is clearly illustrated by both particle-in-cell simulations and single particle modelings.

15.
Phys Rev E ; 93(3): 033206, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078474

RESUMO

The dynamics of magnetic reconnection (MR) in the high-energy-density (HED) regime, where the plasma inflow is strongly driven and the thermal pressure is larger than the magnetic pressure (ß>1), is reexamined theoretically and by particle-in-cell simulations. Interactions of two colliding laser-produced plasma bubbles with self-generated poloidal magnetic fields of, respectively, antiparallel and parallel field lines are considered. Through comparison, it is found that the quadrupole magnetic field, bipolar poloidal electric field, plasma heating, and even the out-of-plane electric field can appear in both cases due to the mere plasma bubble collision, which may not be individually recognized as evidences of MR in the HED regime separately. The Lorentz-invariant scalar quantity D(e) ≃ γ(e)j · (E + v(e) × B) (γ(e) = [1-(v(e)/c)(2)](-1/2)) in the electron dissipation region is proposed as the key sign of MR occurrence in this regime.

16.
Artigo em Inglês | MEDLINE | ID: mdl-26651801

RESUMO

It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26651802

RESUMO

A scheme for enhanced quantum electrodynamics (QED) production of electron-positron-pair plasmas is proposed that uses two ultraintense lasers irradiating a thin solid foil from opposite sides. In the scheme, under a proper matching condition, in addition to the skin-depth emission of γ-ray photons and Breit-Wheeler creation of pairs on each side of the foil, a large number of high-energy electrons and photons from one side can propagate through it and interact with the laser on the other side, leading to much enhanced γ-ray emission and pair production. More importantly, the created pairs can be collected later and confined to the center by opposite laser radiation pressures when the foil becomes transparent, resulting in the formation of unprecedentedly overdense and high-energy pair plasmas. Two-dimensional QED particle-in-cell simulations show that electron-positron-pair plasmas with overcritical density 10(22) cm(-3) and a high energy of 100s of MeV are obtained with 10 PW lasers at intensities 10(23) W/cm(2), which are of key significance for laboratory astrophysics studies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25215833

RESUMO

It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.


Assuntos
Íons , Lasers , Modelos Teóricos , Radiação , Simulação por Computador , Difusão , Elétrons , Pressão , Prótons , Temperatura
19.
Artigo em Inglês | MEDLINE | ID: mdl-25019898

RESUMO

The collision of wake bubbles behind two counterpropagating laser pulses in rarefied plasma is investigated using particle-in-cell simulation. Special attention is paid to the highly nonlinear dynamics of the electrons in the interaction region. It is found that, as the two bubbles approach each other and collide, the electrons in the interaction region first oscillate in a periodic fashion, forming a quasistationary dense electron density ripple with fairly regular spatial structure. At longer times, the electron motion becomes chaotic, and the density grating is gradually smeared. The electrons escape in the transverse direction, and eventually the two bubbles merge to form a single one. The transition of the electron motion from regular to chaotic is confirmed by analytical modeling using test electrons moving in counterpropagating planar electromagnetic waves. The findings shed light on the dynamics of wake-bubble collisions and the complex behavior induced by multiple laser pulses in plasmas.


Assuntos
Lasers , Modelos Químicos , Gases em Plasma/química , Gases em Plasma/efeitos da radiação , Reologia/métodos , Simulação por Computador , Oscilometria/métodos , Doses de Radiação
20.
Artigo em Inglês | MEDLINE | ID: mdl-23767639

RESUMO

Plasma defocusing and higher-order Kerr effects on multiple filamentation and pattern formation of ultrashort laser pulse propagation in air are investigated. Linear analyses and numerical results show that these two saturable nonlinear effects can destroy the coherent evolution of the laser field, and small-scale spatial turbulent structures rapidly appear. For the two-dimensional case, numerical simulations show that blow-up-like solutions, spatial chaos, and pseudorecurrence can appear at higher laser intensities if only plasma defocusing is included. These complex patterns result from the stochastic evolution of the higher- or shorter-wavelength modes of the laser light spectrum. From the viewpoint of nonlinear dynamics, filamentation can be attributed to the modulational instability of these spatial incoherent localized structures. Furthermore, filament patterns associated with multiphoton ionization of the air molecules with and without higher-order Kerr effects are compared.


Assuntos
Ar , Lasers , Modelos Químicos , Modelos Moleculares , Gases em Plasma/química , Gases em Plasma/efeitos da radiação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...