Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17551, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772191

RESUMO

Neutron detection is crucial for particle physics experiments, nuclear power, space and international security. Solid state neutron detectors are of great interest due to their superior mechanical robustness, smaller size and lower voltage operation compared to gas detectors. Gallium nitride (GaN), a mature wide bandgap optoelectronic and electronic semiconductor, is attracting research interest for neutron detection due to its radiation hardness and thermal stability. This work investigated thermal neutron scintillation detectors composed of GaN thin films with and without conversion layers or rare-earth doping. Intrinsic GaN-based neutron scintillators are demonstrated via the intrinsic 14N(n, p) reaction, which has a small thermal neutron cross-section at low neutron energies, but is comparable to other reactions at high neutron energies (>1 MeV). Gamma discrimination is shown to be possible with pulse-height in intrinsic GaN-based scintillation detectors. Additionally, GaN-based scintillation detector with a 6LiF neutron conversion layer and Gd-doped GaN detector are compared with intrinsic GaN detectors. These results indicate GaN scintillator is a suitable candidate neutron detector in high-flux applications.

2.
Lab Chip ; 19(24): 4071-4082, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31702750

RESUMO

Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 µm to 10 µm for matrices and 100-200 µm for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a serious fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale 'shale-like' microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial.

3.
Phys Rev Lett ; 110(22): 227701, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767747

RESUMO

Whereas thermoelectric performance is normally limited by the figure of merit ZT, transverse thermoelectrics can achieve arbitrarily large temperature differences in a single leg even with inferior ZT by being geometrically tapered. We introduce a band-engineered transverse thermoelectric with p-type Seebeck in one direction and n-type orthogonal, resulting in off-diagonal terms that drive heat flow transverse to electrical current. Such materials are advantageous for microscale devices and cryogenic temperatures--exactly the regimes where standard longitudinal thermoelectrics fail. InAs/GaSb type II superlattices are shown to have the appropriate band structure for use as a transverse thermoelectric.

4.
Rev Sci Instrum ; 83(2): 024703, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380109

RESUMO

In this paper, a four-point characterization method is developed for samples that have either capacitive or ohmic contacts. When capacitive contacts are used, capacitive current- and voltage-dividers result in a capacitive scaling factor not present in four-point measurements with only ohmic contacts. From a circuit equivalent of the complete measurement system, one can determine both the measurement frequency band and capacitive scaling factor for various four-point characterization configurations. This technique is first demonstrated with a discrete element four-point test device and then with a capacitively and ohmically contacted Hall bar sample over a wide frequency range (1 Hz-100 kHz) using lock-in measurement techniques. In all the cases, data fit well to a circuit simulation of the entire measurement system, and best results are achieved with large area capacitive contacts and a high input-impedance preamplifier stage. An undesirable asymmetry offset in the measurement signal is described which can arise due to asymmetric voltage contacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...