Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0273898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454946

RESUMO

Conventional passive tracking methods for underwater acoustic targets in sonar engineering generate time azimuth histogram and use it as a basis for target azimuth and tracking. Passive underwater acoustic targets only have azimuth information on the time azimuth histogram, which is easy to be lost and disturbed by ocean noise. To improve the accuracy of passive tracking, we propose to adopt the processed multi-beam Low Frequency Analysis and Recording (LOFAR) as the dataset for passive tracking. In this paper, an improved LeNet-5 convolutional neural network model (CNN) model is used to identify targets, and a passive tracking method for underwater acoustic targets based on multi-beam LOFAR and deep learning is proposed, combined with Extended Kalman Filter (EKF) to improve the tracking accuracy. The performance of the method under realistic conditions is evaluated through simulation analysis and validation using data obtained from marine experiments.


Assuntos
Aprendizado Profundo , Acústica , Som , Simulação por Computador , Engenharia
2.
Materials (Basel) ; 15(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36363424

RESUMO

In the fiberglass industry, Pt-Rh bushings made of platinum and rhodium have very good characteristics, such as high temperature resistance, corrosion resistance, oxidation resistance, and creep resistance. In this paper, a semi-infinite lath structure model is constructed, and the expression of the surface temperature distribution of a Pt-Rh alloy plate with a circular through hole is obtained based on the non-Fourier heat conduction equation, complex function method and conformal mapping method. At the same time, the influence of the position of the circular through hole in the Pt-Rh bushing and the parameters of the incident light source (Non-diffusion incident wave number and relative thermal diffusion length) on the surface temperature distribution of the Pt-Rh bushing is studied by using this formula. It is found that: 1. heat concentration and fracture are occur easily at the through hole; 2. when the through hole is in the asymmetric center, the greater the asymmetry, the smaller the maximum temperature amplitude; 3. when the buried depth of the through hole increases, the maximum temperature amplitude decreases; 4. when the incident wave number and the relative thermal diffusion length of the incident light source are larger, the maximum temperature amplitude is smaller. The numerical results are almost consistent with those of ANSYS thermal simulation. The expression of the surface temperature distribution of the semi-infinite lath structure proposed in this paper can effectively reduce the loss of precious metal materials and the time of thermal simulation in the experimental process, as well as provide important significance for structural design, quality inspection, process optimization, and service life improvement of Pt-Rh bushings.

3.
Materials (Basel) ; 15(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36013917

RESUMO

Sodium bismuth titanate (Bi0.5Na0.5TiO3, BNT) has attracted much attention because of its excellent dielectric, piezoelectric and electromechanical properties. The microstructure of sodium bismuth titanate-doped ferrum niobium material (Bi0.5Na0.5TiO3 doped (Fe0.5Nb0.5)4+, BNT-xFN) shows a triangle as its typical defect shape. Since piezoelectric devices usually operate under dynamic loads, they fail easily owing to dynamic stress concentration or dynamic fracture. Elastic waves can simulate many types of dynamic loads, and the dynamic stress concentration caused by an anti-plane shear wave is the basis for the calculation of the stress field strength factor of type Ⅲ-dynamic fractures. In this study, the electroelastic coupled-wave diffraction and dynamic stress concentration of BNT-xFN materials with triangular defects under the incidence of anti-plane shear waves were studied. Maxwell equations are decoupled by auxiliary functions, and the analytical solutions of the elastic wave field and electric field are obtained. Based on the conformal mapping method, the triangle defect was mapped to the unit circle defect, and the dynamic stress concentration coefficient around the triangle defect was obtained by calculating the undetermined mode coefficients in the expression through boundary conditions. The numerical calculation shows that the size of the triangular hole, the frequency of the applied mechanical load, the incidence angle of mechanical load and the amount of FN doping have a great influence on the stress concentration of BNT-xFN materials.

4.
Materials (Basel) ; 15(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806688

RESUMO

Based on the theory of magnetoacoustic coupled dynamics, the purpose of this paper is to evaluate the dynamic stress concentration near an elliptical opening in exponential-gradient piezomagnetic materials under the action of antiplane shear waves. By the wave function expansion, the solutions for the acoustic wave fields and magnetic fields can be obtained. Stress analysis is performed by the complex function method and the conformal mapping method, which are used to solve the boundary conditions problem, and is used to express the dynamic stress concentration coefficient (DSCC) theoretically. As cases, numerical results of DSCCs are plotted and discussed with different incident wave numbers and material parameters by numerical simulation. Compared with circular openings, elliptical openings are widely used in material processing techniques and are more difficult to solve. Numerical results show that the dynamic stress concentration coefficient at the elliptical opening is strongly dependent on various parameters, which indicates that the elliptical opening is more likely to cause crack and damage to exponential-gradient piezomagnetic materials.

5.
Materials (Basel) ; 15(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35329757

RESUMO

Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called "gradient printing". By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture.

6.
Materials (Basel) ; 14(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832280

RESUMO

Based on the magnetoacoustic coupled dynamics theory, the wave function expansion method is used to solve the problem of acoustic wave scattering and dynamic stress concentration around the two openings in e-type piezomagnetic composites. To deal with the multiple scattering between openings, the local coordinate method is introduced. The general analytical solution to the problem and the expression of the dynamic stress concentration are derived. As an example, the numerical results of the dynamic stress distribution around two openings with equal diameters are given. The effects of the parameters, such as the incident wave number and the spacing between the openings, on the dynamic stress concentration factor are analyzed.

7.
Materials (Basel) ; 13(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028577

RESUMO

A theoretical method is developed to study the magnetoelastic coupled wave and dynamic stress intensity around a cylindrical aperture in exponential graded piezomagnetic materials. By employing the decoupling technique, the coupled magnetoelastic governing equations are decomposed. Then the analytic solutions of elastic wave fields and magnetic fields are presented by using the wave function expansion method. By satisfying the boundary conditions of the aperture, the mode coefficients, and the analytic solutions of dynamic stress intensity factors are determined. The numerical examples of the dynamic stress intensity factor near the aperture are presented. The numerical results indicate that the incident wave number, the piezomagnetic properties, and the nonhomogeneous parameter of materials highly influence the dynamic stress around the aperture.

8.
Sensors (Basel) ; 19(8)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010229

RESUMO

With the application to engineering practice, the study of the scattering of thermal waves using innovative and comprehensive methods is becoming increasingly important. The thermal wave scattering by an elliptic subsurface hole in a block with two boundaries is discussed based on the non-Fourier heat conduction equation, employing the complex function method and the conformal mapping method, and a general solution for the thermal wave scattering is given. The numerical results of temperature distributions around a subsurface hole are presented and the effects of geometrical and physical parameters on the temperature distributions were analyzed. The wave number, the shape and position of the hole, the scale of the block, and the frequency of the heat load were found to have great effects on distributions and variations of temperature. The findings of this study could be helpful in providing better understandings of infrared thermal wave imaging, the physical inverse problem, and the evaluation of internal holes in materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...