Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Invest Dermatol ; 143(10): 2019-2029.e3, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142186

RESUMO

cAMP signaling is a well-established regulator of melanin synthesis. Two distinct cAMP signaling pathways-the transmembrane adenylyl cyclase pathway, activated primarily by the MC1R, and the soluble adenylyl cyclase (sAC) pathway-affect melanin synthesis. The sAC pathway affects melanin synthesis by regulating melanosomal pH, and the MC1R pathway affects melanin synthesis by regulating gene expression and post-translational modifications. However, whether MC1R genotype affects melanosomal pH is poorly understood. We now report that loss of function MC1R does not affect melanosomal pH. Thus, sAC signaling appears to be the only cAMP signaling pathway that regulates melanosomal pH. We also addressed whether MC1R genotype affects sAC-dependent regulation of melanin synthesis. Although sAC loss of function in wild-type human melanocytes stimulates melanin synthesis, sAC loss of function has no effect on melanin synthesis in MC1R nonfunctional human and mouse melanocytes or skin and hair melanin in e/e mice. Interestingly, activation of transmembrane adenylyl cyclases, which increases epidermal eumelanin synthesis in e/e mice, leads to enhanced production of eumelanin in sAC-knockout mice relative to that in sAC wild-type mice. Thus, MC1R- and sAC-dependent cAMP signaling pathways define distinct mechanisms that regulate melanosomal pH and pigmentation.


Assuntos
Adenilil Ciclases , Melaninas , Camundongos , Animais , Humanos , Melaninas/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Pigmentação , Melanócitos/metabolismo , Transdução de Sinais , Camundongos Knockout , Concentração de Íons de Hidrogênio
3.
J Invest Dermatol ; 141(7): 1810-1818.e6, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33549605

RESUMO

Melanin synthesis occurs within a specialized organelle called the melanosome. Traditional methods for measuring melanin levels rely on the detection of chemical degradation products of melanin by high-performance liquid chromatography. Although these methods are robust, they are unable to distinguish between melanin synthesis and degradation and are best suited to measure melanin changes over long periods of time. We developed a method that actively measures both eumelanin and pheomelanin synthesis by fate tracing [U-13C] L-tyrosine using liquid chromatography-mass spectrometry. Using this method, we confirmed the previous reports of the differences in melanin synthesis between melanocytes derived from individuals with different skin colors and MC1R genotype and uncovered new information regarding the differential de novo synthesis of eumelanin and pheomelanin, also called mixed melanogenesis. We also revealed that distinct mechanisms that alter melanosomal pH differentially induce new eumelanin and pheomelanin synthesis. Finally, we revealed that the synthesis of L-3,4-dihydroxyphenylalanine, an important metabolite of L-tyrosine, is differentially controlled by multiple factors. Because L-tyrosine fate tracing is compatible with untargeted liquid chromatography-mass spectrometry‒based metabolomics, this approach enables the broad measurement of cellular metabolism in combination with melanin metabolism, and we anticipate that this approach will shed new light on multiple mechanisms of melanogenesis.


Assuntos
Espectrometria de Massas/métodos , Melaninas/análise , Melanossomas/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Isótopos de Carbono/análise , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Melaninas/biossíntese , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptor Tipo 1 de Melanocortina/genética , Pigmentação da Pele , Tirosina/análise , Tirosina/química , Tirosina/metabolismo
4.
Sci Signal ; 11(555)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401788

RESUMO

The production of melanin increases skin pigmentation and reduces the risk of skin cancer. Melanin production depends on the pH of melanosomes, which are more acidic in lighter-skinned than in darker-skinned people. We showed that inhibition of soluble adenylyl cyclase (sAC) controlled pigmentation by increasing the pH of melanosomes both in cells and in vivo. Distinct from the canonical melanocortin 1 receptor (MC1R)-dependent cAMP pathway that controls pigmentation by altering gene expression, we found that inhibition of sAC increased pigmentation by increasing the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, which is more active at basic pH. We demonstrated that the effect of sAC activity on pH and melanin production in human melanocytes depended on the skin color of the donor. Last, we identified sAC inhibitors as a new class of drugs that increase melanosome pH and pigmentation in vivo, suggesting that pharmacologic inhibition of this pathway may affect skin cancer risk or pigmentation conditions.


Assuntos
AMP Cíclico/metabolismo , Melanócitos/citologia , Melanossomas/metabolismo , Pigmentação da Pele , Adenilil Ciclases/metabolismo , Animais , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Queratinócitos/metabolismo , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Monofenol Mono-Oxigenase/metabolismo , Pigmentação , Receptor Tipo 1 de Melanocortina/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Curtume
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...