Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell Rep Med ; : 101553, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38723626

RESUMO

BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.

2.
Case Rep Infect Dis ; 2024: 7219952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737750

RESUMO

Over 200 different serogroups of Vibrio cholerae based on O-polysaccharide specificity have been described worldwide, including the two most important serogroups, O1 and O139. Non-O1/non-O139 V. cholerae serogroups generally do not produce the cholera-causing toxin but do sporadically cause gastroenteritis and extra-intestinal infections. Recently, however, bloodstream infections caused by non-O1/non-O139 V. cholerae are being increasingly reported, and these infections are associated with high mortality in immunocompromised hosts. We describe a case of non-O1/non-O139 V. cholerae bacteremia in a patient with autoimmune pancreatitis and stenosis of the intra- and extrahepatic bile ducts. The clinical manifestations of bacteremia were fever and mild digestive symptoms. The blood cultures showed V. cholerae, which was identified as a non-O1, non-O139 serogroup by slide agglutination tests and PCR. The bloodstream infection of the patient was likely caused by the consumption of contaminated seafood at a banquet. The patient recovered after the administration of a third-generation cephalosporin. Non-O1/non-O139 V. cholerae infection presents with or without gastrointestinal manifestations; close attention should be paid to the possibility of disseminated non-O1/non-O139 V. cholerae infection in high-risk patients.

3.
Nat Commun ; 15(1): 3284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627386

RESUMO

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called 'FLip' mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.


Assuntos
Anticorpos Monoclonais , Complicações Pós-Operatórias , Humanos , Mutação , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Nat Commun ; 15(1): 2734, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548763

RESUMO

Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Sindactilia , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
5.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257531

RESUMO

Due to limitations in operational scope and efficiency, a single Autonomous Underwater Vehicle (AUV) falls short of meeting the demands of the contemporary marine working environment. Consequently, there is a growing interest in the coordination of multiple AUVs. To address the requirements of coordinated missions, this paper proposes a comprehensive solution for the coordinated development of multi-AUV formations, encompassing long-range ferrying, coordinated detection, and surrounding attack. In the initial phase, detection devices are deactivated, employing a path planning method based on the Rapidly Exploring Random Tree (RRT) algorithm to ensure collision-free AUV movement. During the coordinated detection phase, an artificial potential field method is applied to maintain AUV formation integrity and avoid obstacles, dynamically updating environmental probability based on formation movement. In the coordinated surroundings attack stage, predictive capabilities are enhanced using Long Short-Term Memory (LSTM) networks and reinforcement learning. Specifically, LSTM forecasts the target's position, while the Deep Deterministic Policy Gradient (DDPG) method controls AUV formation. The effectiveness of this coordinated solution is validated through an integrated simulation trajectory.

6.
Lancet Infect Dis ; 24(2): 129-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006892

RESUMO

BACKGROUND: Spread of SARS-CoV-2 led to a global pandemic, and there remains unmet medical needs in the treatment of Omicron infections. VV116, an oral antiviral agent that has potent activity against SARS-CoV-2, was compared with a placebo in this phase 3 study to investigate its efficacy and safety in patients with mild-to-moderate COVID-19. METHODS: This multicentre, double-blind, phase 3, randomised controlled study enrolled adults in hospitals for infectious diseases and tertiary general hospitals in China. Eligible patients were randomly assigned in a 1:1 ratio using permuted block randomisation to receive oral VV116 (0·6 g every 12 h on day 1 and 0·3 g every 12 h on days 2-5) or oral placebo (on the same schedule as VV116) for 5 days. Randomisation stratification factors included SARS-CoV-2 vaccination status and the presence of high-risk factors for progression to severe COVID-19. Inclusion criteria were a positive SARS-CoV-2 test, an initial onset of COVID-19 symptoms 3 days or less before the first study dose, and a score of 2 or more for any target COVID-19-related symptoms in the 24 h before the first dose. Patients who had severe or critical COVID-19 or who had taken any antiviral drugs were excluded from the study. The primary endpoint was the time to clinical symptom resolution for 2 consecutive days. Efficacy analyses were performed on a modified intention-to-treat population, comprising all patients who received at least one dose of VV116 or placebo, tested positive for SARS-CoV-2 nucleic acid, and did not test positive for influenza virus before the first dose. Safety analyses were done on all participants who received at least one dose of VV116 or placebo. This study was registered with ClinicalTrials.gov, NCT05582629, and has been completed. FINDINGS: A total of 1369 patients were randomly assigned to treatment groups and 1347 received either VV116 (n=674) or placebo (n=673). At the interim analysis, VV116 was superior to placebo in reducing the time to sustained clinical symptom resolution among 1229 patients (hazard ratio [HR] 1·21, 95% CI 1·04-1·40; p=0·0023). At the final analysis, a substantial reduction in time to sustained clinical symptom resolution was observed for VV116 compared with placebo among 1296 patients (HR 1·17, 95% CI 1·04-1·33; p=0·0009), consistent with the interim analysis. The incidence of adverse events was similar between groups (242 [35·9%] of 674 patients vs 283 [42·1%] of 673 patients). INTERPRETATION: Among patients with mild-to-moderate COVID-19, VV116 significantly reduced the time to sustained clinical symptom resolution compared with placebo, with no observed safety concerns. FUNDING: Shanghai Vinnerna Biosciences, Shanghai Science and Technology Commission, and the National Key Research and Development Program of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Adenosina , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , China/epidemiologia , Método Duplo-Cego , Adenosina/análogos & derivados
7.
Curr Opin Virol ; 61: 101332, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285620

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has led to hundreds of millions of infections and millions of deaths, however, human monoclonal antibodies (mAbs) can be an effective treatment. Since SARS-CoV-2 emerged, a variety of strains have acquired increasing numbers of mutations to gain increased transmissibility and escape from the immune response. Most reported neutralizing human mAbs, including all approved therapeutic ones, have been knocked down or out by these mutations. Broadly neutralizing mAbs are therefore of great value, to treat current and possible future variants. Here, we review four types of neutralizing mAbs against the spike protein with broad potency against previously and currently circulating variants. These mAbs target the receptor-binding domain, the subdomain 1, the stem helix, or the fusion peptide. Understanding how these mAbs retain potency in the face of mutational change could guide future development of therapeutic antibodies and vaccines.


Assuntos
COVID-19 , Humanos , Anticorpos Amplamente Neutralizantes , SARS-CoV-2/genética , Pandemias , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico
8.
Nat Commun ; 14(1): 3334, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286554

RESUMO

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Mutação , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
Biosens Bioelectron ; 231: 115299, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054600

RESUMO

Natriuretic peptides can relieve cardiovascular stress and closely related to heart failure. Besides, these peptides also have preferable interactions of binding to cellular protein receptors, and subsequently mediate various physiology actions. Hence, detection of these circulating biomarkers could be evaluated as a predictor ("Gold standard") for rapid, early diagnosis and risk stratification in heart failure. Herein, we proposed a measurement to discriminate multiple natriuretic peptides via the peptide-protein nanopore interaction. The nanopore single-molecular kinetics revealed that the strength of peptide-protein interactions was in the order of ANP > CNP > BNP, which was demonstrated by the simulated peptide structures using SWISS-MODEL. More importantly, the peptide-protein interaction analyzing also allowed us to measure the peptide linear analogs and structure damage in peptide by single-chemical bond breakup. Finally, we presented an ultra-sensitive detection of plasma natriuretic peptide using asymmetric electrolyte assay, obtaining a detection limit of ∼770 fM for BNP. At approximately, it is 1597 times lower than that of using symmetric assay (∼1.23 nM), 8 times lower than normal human level (∼6 pM), and 13 times lower than the diagnostic values (∼10.09 pM) complied in the guideline of European Society of Cardiology. That said, the designed nanopore sensor is benefit for natriuretic peptides measurement at single molecule level and demonstrates its potential for heart failure diagnosis.


Assuntos
Técnicas Biossensoriais , Insuficiência Cardíaca , Nanoporos , Humanos , Fator Natriurético Atrial/metabolismo , Biomarcadores , Insuficiência Cardíaca/diagnóstico , Peptídeos Natriuréticos
10.
Cell Rep ; 42(4): 112271, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36995936

RESUMO

In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , SARS-CoV-2 , Substituição de Aminoácidos , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Neutralizantes
11.
Cell Rep ; 42(1): 111903, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586406

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.


Assuntos
COVID-19 , Hepatite D , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Anticorpos
12.
Viruses ; 14(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36560629

RESUMO

Echoviruses, for which there are currently no approved vaccines or drugs, are responsible for a range of human diseases, for example echovirus 11 (E11) is a major cause of serious neonatal morbidity and mortality. Decay-accelerating factor (DAF, also known as CD55) is an attachment receptor for E11. Here, we report the structure of the complex of E11 and the full-length ectodomain of DAF (short consensus repeats, SCRs, 1-4) at 3.1 Å determined by cryo-electron microscopy (cryo-EM). SCRs 3 and 4 of DAF interact with E11 at the southern rim of the canyon via the VP2 EF and VP3 BC loops. We also observe an unexpected interaction between the N-linked glycan (residue 95 of DAF) and the VP2 BC loop of E11. DAF is a receptor for at least 20 enteroviruses and we classify its binding patterns from reported DAF/virus complexes into two distinct positions and orientations, named as E6 and E11 poses. Whilst 60 DAF molecules can attach to the virion in the E6 pose, no more than 30 can attach to E11 due to steric restrictions. Analysis of the distinct modes of interaction and structure and sequence-based phylogenies suggests that the two modes evolved independently, with the E6 mode likely found earlier.


Assuntos
Infecções por Enterovirus , Enterovirus , Recém-Nascido , Humanos , Microscopia Crioeletrônica , Antígenos CD55 , Enterovirus/metabolismo , Enterovirus Humano B/metabolismo
15.
Front Plant Sci ; 13: 949857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212289

RESUMO

The urgent requirement for improving the efficiency of agricultural plant protection operations has spurred considerable interest in multiple plant protection UAV systems. In this study, a performance-guaranteed distributed control scheme is developed in order to address the control of multiple plant protection UAV systems with collision avoidance and a directed topology. First, a novel concept called predetermined time performance function (PTPF) is proposed, such that the tracking error can converge to an arbitrary small preassigned region in finite time. Second, combined with the two-order filter for each UAV, the information estimation from the leader is generated. The distributed protocol avoids the use of an asymmetric Laplace matrix of a directed graph and solves the difficulty of control design. Furthermore, by introducing with a collision prediction mechanism, a repulsive force field is constructed between the dynamic obstacle and the UAV, in order to avoid the collision. Finally, it is rigorously proved that the consensus of the multiple plant protection UAV system can be achieved while guaranteeing the predetermined time performance. A numerical simulation is carried out to verify the effectiveness of the presented method, such that the multiple UAVs system can fulfill time-constrained plant protection tasks.

16.
Int J Anthropol Ethnol ; 6(1): 13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061493

RESUMO

Mobility and interlinkage have become the most important characteristics of our time. The mobility and interlinkage of people, material and information constitute the way and rules of the operation of today's world. Internet links, cloud computing, complex database and human computation have changed the way people relate to the world, thus the anthropology for understanding and interpretation of human cultures have changed correspondingly. Cultures in the state of mobility and interlinkage, such as spatial changes, the evolution of interpersonal relationships and the new cultural order, have become a new subject.

17.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662412

RESUMO

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Assuntos
Anticorpos Monoclonais , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Epitopos , Humanos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
18.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35772405

RESUMO

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , SARS-CoV-2/genética , África do Sul
19.
Front Plant Sci ; 13: 861534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548293

RESUMO

During the process of drought and rehydration, dew can promote the rapid activation of photosynthetic activity and delay the wilting time of plant leaves and stems. It is clear that the amount of dew will affect the growth of plants. However, limited research is being done to detect and measure the amount of dew. Therefore, in this study, a statistical method for measuring the amount of dew based on computer vision processing was developed. In our framework, dewdrops can be accurately measured by isolating the background area based on color features and detecting the edge and statistical area. In this scheme, the multi-convolutional edge detection networks based on contour search loss function are proposed as the main implementation algorithm of edge detection. Through color feature background region segmentation and the proposed edge detection networks, our algorithm can detect dew in complex plant backgrounds. Experimental results showed that the proposed method gains a favorable detection accuracy compared with other edge detection methods. Moreover, we achieved the best Optimal Image Scale (OIS) and Optimal Dataset Scale (ODS) when testing with different pixel values, which illustrate the robustness of our method in dew detection.

20.
Front Plant Sci ; 13: 849260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548311

RESUMO

With the arrival of aging society and the development of modern agriculture, the use of agricultural robots for large-scale agricultural production activities will become a major trend in the future. Therefore, it is necessary to develop suitable robots and autonomous navigation technology for agricultural production. However, there is still a problem of external noise and other factors causing the failure of the navigation system. To solve this problem, we propose an agricultural scene-based multi-sensor fusion method via a loosely coupled extended Kalman filter algorithm to reduce interference from external environment. Specifically, the proposed method fuses inertial measurement unit (IMU), robot odometer (ODOM), global navigation and positioning system (GPS), and visual inertial odometry (VIO), and uses visualization tools to simulate and analyze the robot trajectory and error. In experiments, we verify the high accuracy and the robustness of the proposed algorithm when sensors fail. The experimental results show that the proposed algorithm has better accuracy and robustness on the agricultural dataset than other algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...