Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(28): 11207-11214, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37392193

RESUMO

Transition metal nitrides are promising electrocatalysts for hydrogen evolution reaction (HER) owing to their Pt-like electronic structure. However, the harsh nitriding conditions greatly limit their large-scale applications. Herein, ultrafine Co3Mo3N-Mo2C (<1 nm)-decorated carbon nanofibers (Co3Mo3N-Mo2C/CNFs) were prepared by electrostatic spinning followed by pyrolysis treatment, in which the MoCo-MOF simultaneously serves as the precursor and nitrogen source. The generated synergistic interactions between Mo2C and Co3Mo3N significantly adjust the electronic structure of Mo2C and afford a fast charge transfer, which endows the resultant hybrid with superior HER electrocatalytic performances. Specifically, the as-obtained Co3Mo3N-Mo2C/CNF delivers a low overpotential of only 76 mV to achieve a current density of 10 mA cm-2 and superior durability with no obvious degradation for 200 h in acidic media. This performance outperforms most of the transition metal-based electrocatalysts reported to date. This work paves a new way for the design of catalysts with ultrasmall size and high efficiency in energy conversion.

2.
Dalton Trans ; 52(20): 6906-6914, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37158418

RESUMO

The preparation of a high-efficiency and durable electrocatalyst for the alkaline hydrogen evolution reaction (HER) is essential for realizing renewable energy technologies. Herein, a series of La0.5Sr0.5CoO3-δ perovskites with different amounts of Cu cations substituting at B-sites were fabricated for the HER. Specifically, the optimized La0.5Sr0.5Co0.8Cu0.2O3-δ (LSCCu0.2) exhibits a significantly enhanced electrocatalytic activity with an ultralow overpotential of 154 mV at 10 mA cm-2 in 1.0 M KOH, which is reduced by 125 mV compared with that of pristine La0.5Sr0.5CoO3-δ (LSC, 279 mV). It also delivers a robust durability with no obvious degradation after 150 h. Impressively, the HER activity of LSCCu0.2 is superior to that of commercial Pt/C at large current densities (>270 mA cm-2). XPS analysis indicates that Co2+ ions replaced by an appropriate amount of Cu2+ ions can increase the proportion of Co3+ and generate high content of oxygen vacancies in LSC, which leads to an increased electrochemically active surface area, thereby greatly facilitating the HER. This work offers a simple way for the rational design of cost-effective and highly efficient catalysts, which may be extended to other Co-based perovskite oxides for the alkaline HER.

3.
Inorg Chem ; 62(20): 8001-8009, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37167416

RESUMO

The successful preparation of a perovskite-based heterostructure is important for broadening the applications of perovskites in the field of electrocatalysis, especially in a hydrogen evolution reaction (HER). Nevertheless, the limited active sites of perovskites severely hindered the HER properties. Herein, an in situ exsolution method was used to construct a nanocomposite based on V-doped BaCoO3-δ decorated with Ba3(VO4)2 (BVCO19) for alkaline HER. The exsolved Ba3(VO4)2 can induce more Co4+ ions on BaCoO3-δ, which serves as active sites for the release of H2. Meanwhile, by regulating the valency of V and Co species, the catalyst can reach a charge balance by generating more oxygen vacancies, which greatly facilitates the adsorption and dissociation of H2O molecules. The synergistic effect between the oxygen vacancies and high-valence Co4+ leads to an enhanced HER performance of BVCO19. The as-obtained catalyst delivers a low overpotential of 194 mV at 10 mA cm-2 as well as impressive stability for 100 h in alkaline media, which outperforms pristine BaCoO3-δ and most of the nonprecious-based perovskite oxides. This work provides new insights into the preparation of perovskite-based heterostructure for boosting HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA