Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Memb Sci ; 5932020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863548

RESUMO

Self-diffusivities of ethane were measured by multinuclear pulsed field gradient (PFG) NMR inside zeolitic imidazolate framework-11 (ZIF-11) crystals dispersed in several selected polymers to form mixed-matrix membranes (MMMs). These diffusivities were compared with the corresponding intracrystalline self-diffusivities in ZIF-11 crystal beds. It was observed that the confinement of ZIF-11 crystals in ZIF-11 / Torlon MMM can lead to a decrease in the ethane intracrystalline self-diffusivity. Such diffusivity decrease was observed at different temperatures used in this work. PFG NMR measurements of the temperature dependence of the intracrystalline self-diffusivity of ethylene in the same ZIF-11 / Torlon MMM revealed similar diffusivity decrease as well as an increase in the diffusion activation energy in comparison to those in unconfined ZIF-11 crystals in a crystal bed. These observations for ethane and ethylene were attributed to the reduction of the flexibility of the ZIF-11 framework due to the confinement in Torlon leading to a smaller effective aperture size of ZIF-11 crystals. Surprisingly, the intra-ZIF diffusion selectivity for ethane and ethylene was not changed appreciably by the confinement of ZIF-11 crystals in Torlon in comparison to the selectivity in a bed of ZIF-11 crystals. No ZIF-11 confinement effects leading to a reduction in the intracrystalline self-diffusivity of ethane and ethylene were observed for the other two studied MMM systems: ZIF-11 / Matrimid and ZIF-11 / 6FDA-DAM. The absence of the confinement effect in the latter MMMs can be related to the lower values of the polymer bulk modulus in these MMMs in comparison to that in ZIF-11 / Torlon MMM. In addition, there may be a contribution from possible differences in the ZIF-11/polymer adhesion in different MMM types.

2.
ChemSusChem ; 7(12): 3202-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25363474

RESUMO

Industrial separation processes comprise approximately 10% of the global energy demand, driven largely by the utilization of thermal separation methods (e.g., distillation). Significant energy and cost savings can be realized using advanced separation techniques such as membranes and sorbents. One of the major barriers to acceptance of these techniques remains creating materials that are efficient and productive in the presence of aggressive industrial feeds. One promising class of emerging materials is zeolitic imidazolate frameworks (ZIFs), an important thermally and chemically stable subclass of metal organic frameworks (MOFs). The objectives of this paper are (i) to provide a current understanding of the synthetic methods that enable the immense tunability of ZIFs, (ii) to identify areas of success and areas for improvement when ZIFs are used as adsorbents, (iii) to identify areas of success and areas for improvement in ZIF membranes. A review is given of the state-of-the-art in ZIF synthesis procedures and novel ZIF formation pathways as well as their application in energy efficient separations.


Assuntos
Gases/isolamento & purificação , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...