Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e18038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314842

RESUMO

Background: Seed hypocotyl germination signifies the initiation of the life cycle for plants and represents a critical stage that heavily influences subsequent plant growth and development. While previous studies have established the melatonin (MEL; N-acetyl-5-methoxytrytamine) effect to stimulate seed germination of some plants, its specific role in peony germination and underlying physiological mechanism have yet to be determined. This study aims to evaluate the MEL effect for the hypocotyl germination of peony seeds, further ascertain its physiological regulation factors. Methods: In this work, seeds of Paeonia ostia 'Fengdan' were soaked into MEL solution at concentrations of 50, 100, 200, and 400 µM for 48 h and then germinated in darkness in incubators. Seeds immersed in distilled water without MEL for the same time were served as the control group. Results: At concentrations of 100 and 200 µM, MEL treatments improved the rooting rate of peony seeds, while 400 µM inhibited the process. During seed germination, the 100 and 200 µM MEL treatments significantly reduced the starch concentration, and α-amylase was the primary amylase involved in the action of melatonin. Additionally, compared to the control group, 100 µM MEL treatment significantly increased the GA3 concentration and radicle thickness of seeds, but decreased ABA concentration. The promotion effect of 200 µM MEL pretreatment on GA1 and GA7 was the most pronounced, while GA4 concentration was most significantly impacted by 50 µM and 100 µM MEL. Conclusion: Correlation analysis established that 100 µM MEL pretreatment most effectively improved the rooting rate characterized by increasing α-amylase activity to facilitate starch decomposition, boosting GA3 levels, inhibiting ABA production to increase the relative ratio of GA3 to ABA. Moreover, MEL increased radicle thickness of peony seeds correlating with promoting starch decomposition and enhancing the synthesis of GA1 and GA7.

2.
Opt Express ; 31(15): 24768-24784, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475296

RESUMO

Infrared devices are increasingly used in industrial, medical, and environmental monitoring applications. Cost-effectiveness, robustness, and portability are characteristics that are highly sought after and they can be enabled by a dispersive spectrometer carrying a single-pixel detector. In this paper, we demonstrate a novel, high-throughput dispersive spectrometer that has its spectral resolution decoupled from its throughput. The proposed spectrometer implements a two-stage Hadamard transform encoding process that allows significantly more light into the system to enhance its signal-to-noise ratio. As a single-pixel detector is used to collect the spectral information, the proposed system can be easily implemented in other desired wavelengths. Furthermore, we develop a method to remove the need for uniform illumination at the entrance aperture by taking into consideration its spatial information during the reconstruction process, thereby increasing the ease of the design of devices required for in situ measurement.

3.
Genes (Basel) ; 13(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36553496

RESUMO

Paeonia suffruticosa Andr., a member of Paeoniaceae, is native to China. In its 1600 years' cultivation, more than 2000 cultivars for different purposes (ornamental, medicinal and oil use) have been inbred. However, there are still some controversies regarding the provenance of tree peony cultivars and the phylogenetic relationships between and within different cultivar groups. In this study, plastid genome sequencing was performed on 10 representative tree peony cultivars corresponding to 10 different flower types. Structure and comparative analyses of the plastid genomes showed that the total lengths of the chloroplast genome of the 10 cultivars ranged from 152,153 to 152,385 bp and encoded 84-88 protein-coding genes, 8 rRNAs and 31-40 tRNAs. The number of simple sequence repeats and interspersed repeat sequences of the 10 cultivars ranged from 65-68 and 40-42, respectively. Plastid phylogenetic relationships of Paeonia species/cultivars were reconstructed incorporating data from our newly sequenced plastid genomes and 15 published species, and results showed that subsect. Vaginatae was the closest relative to the central plains cultivar group with robust support, and that it may be involved in the formation of the group. Paeonia ostii was recovered as a successive sister group to this lineage. Additionally, eleven morphological characteristics of flowers were mapped to the phylogenetic skeleton to reconstruct the evolutionary trajectory of flower architecture in Paeoniaceae.


Assuntos
Paeonia , Paeonia/genética , Filogenia , Flores/genética , Mapeamento Cromossômico , Plastídeos/genética
4.
Front Genet ; 13: 880071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646106

RESUMO

NBS-LRR genes are the largest gene family in plants conferring resistance to pathogens. At present, studies on the evolution of NBS-LRR genes in angiosperms mainly focused on monocots and eudicots, while studies on NBS-LRR genes in the basal angiosperms are limited. Euryale ferox represents an early-diverging angiosperm order, Nymphaeales, and confronts various pathogens during its lifetime, which can cause serious economic losses in terms of yield and quality. In this study, we performed a genome-wide identification and analysis of NBS-LRR genes in E. ferox. All 131 identified NBS-LRR genes could be divided into three subclasses according to different domain combinations, including 18 RNLs, 40 CNLs, and 73 TNLs. The E. ferox NBS-LRR genes are unevenly distributed on 29 chromosomes; 87 genes are clustered at 18 multigene loci, and 44 genes are singletons. Gene duplication analysis revealed that segmental duplications acted as a major mechanism for NBS-LRR gene expansions but not for RNL genes, because 18 RNL genes were scattered over 11 chromosomes without synteny loci, indicating that the expansion of RNL genes could have been caused by ectopic duplications. Ancestral gene reconciliation based on phylogenetic analysis revealed that there were at least 122 ancestral NBS-LRR lineages in the common ancestor of the three Nymphaeaceae species, suggesting that NBS-LRR genes expanded slightly during speciation in E. ferox. Transcriptome analysis showed that the majority of NBS-LRR genes were at a low level of expression without pathogen stimulation. Overall, this study characterized the profile of NBS-LRR genes in E. ferox and should serve as a valuable resource for disease resistance breeding in E. ferox.

5.
Opt Express ; 29(21): 34600-34615, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809246

RESUMO

In this paper, a single-pixel mid-infrared (mid-IR) Hadamard transform spectrometer is developed. The spectrometer's design, fabrication and experimental results are discussed. The single-pixel mid-IR Hadamard transform spectrometer has dual cascaded encoding regions, 2875 nm to 3500 nm and 3500 nm to 4077 nm, to reduce the travel range required by the moving mask. The encoded wavelength band is determined by the bandpass filter used. A collection optics consisting of a reverse spectrometer is used to collect the encoded signal onto a single-pixel detector with a small sensing area. A 635 nm laser is used as a reference within the spectrometer to calibrate the recovered spectrum with accurate positioning. Our experiments demonstrate that mid-IR spectrums can be accurately recovered in the designed wavelength range. The proposed spectrometer, with dimensions of 200 mm × 200 mm × 84 mm and a weight of 1.8 kg, can be made portable and at low cost, suitable for IR spectroscopy in the field.

6.
Front Genet ; 11: 737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754204

RESUMO

Nucleotide-binding site (NBS)-type disease resistance genes (R genes) play key roles in plant immune responses and have co-evolved with pathogens over the course of plant lifecycles. Comparative genomic studies tracing the dynamic evolution of NBS-encoding genes have been conducted using many important plant lineages. However, studies on Sapindaceae species have not been performed. In this study, a discrepant number of NBS-encoding genes were identified in the genomes of Xanthoceras sorbifolium (180), Dinnocarpus longan (568), and Acer yangbiense (252). These genes were unevenly distributed and usually clustered as tandem arrays on chromosomes, with few existed as singletons. The phylogenetic analysis revealed that NBS-encoding genes formed three monophyletic clades, RPW8-NBS-LRR (RNL), TIR-NBS-LRR (TNL), and CC-NBS-LRR (CNL), which were distinguished by amino acid motifs. The NBS-encoding genes of the X. sorbifolium, D. longan, and A. yangbiense genomes were derived from 181 ancestral genes (three RNL, 23 TNL, and 155 CNL), which exhibited dynamic and distinct evolutionary patterns due to independent gene duplication/loss events. Specifically, X. sorbifolium exhibited a "first expansion and then contraction" evolutionary pattern, while A. yangbiense and D. longan exhibited a "first expansion followed by contraction and further expansion" evolutionary pattern. However, further expansion in D. longan was stronger than in A. yangbiense after divergence, suggesting that D. longan gained more genes in response to various pathogens. Additionally, the ancient and recent expansion of CNL genes generated the dominance of this subclass in terms of gene numbers, while the low copy number status of RNL genes was attributed to their conserved functions.

7.
Micromachines (Basel) ; 11(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093324

RESUMO

Single-pixel imaging technology is an attractive technology considering the increasing demand of imagers that can operate in wavelengths where traditional cameras have limited efficiency. Meanwhile, the miniaturization of imaging systems is also desired to build affordable and portable devices for field applications. Therefore, single-pixel imaging systems based on microelectromechanical systems (MEMS) is an effective solution to develop truly miniaturized imagers, owing to their ability to integrate multiple functionalities within a small device. MEMS-based single-pixel imaging systems have mainly been explored in two research directions, namely the encoding-based approach and the scanning-based approach. The scanning method utilizes a variety of MEMS scanners to scan the target scenery and has potential applications in the biological imaging field. The encoding-based system typically employs MEMS modulators and a single-pixel detector to encode the light intensities of the scenery, and the images are constructed by harvesting the power of computational technology. This has the capability to capture non-visible images and 3D images. Thus, this review discusses the two approaches in detail, and their applications are also reviewed to evaluate the efficiency and advantages in various fields.

8.
Mitochondrial DNA B Resour ; 5(3): 3469-3471, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33458206

RESUMO

Chimonanthus praecox, a deciduous shrub tree, is endemic to China and widely cultivated in the world as a popular garden and ornamental plant. Here, we have reported its complete chloroplast genome with a length of 153,181 bp, containing a large single copy (LSC) region of 86,916 bp, a small single copy (SSC) region of 19,767 bp and two identical inverted repeat regions (IRs) of 23,249 bp. The overall GC contents of the plastome were 39.27%. A total of 114 unique genes were successfully annotated consisting of 80 protein-coding genes, 30 tRNA genes and four rRNA genes. Sixteen genes each possessed one intron and three genes had two introns. The ML phylogenetic analysis supports Chimonanthus as sister to Calycanthus. This result will be helpful for genetic breeding and population genetics of C. praecox, DNA barcoding of Chimonanthus, and phylogenetic studies of Calycanthaceae.

9.
Opt Express ; 27(18): 25457-25469, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510418

RESUMO

A microelectromechanical systems (MEMS) based self-referencing cascaded line-scan camera using single-pixel detectors is proposed and verified. Single-pixel detectors make it an attractive low-cost alternative of a traditional line-scan camera that can operate at any wavelength. The proposed system is composed of several identical cascaded line imager units driven by a common actuator. Each unit is an integration of an imaging slit, a MEMS encoding mask, a light concentrator and a single-pixel detector. The spatial resolution of the proposed line-scan camera can thus be N-fold immediately by cascading N units to achieve high spatial resolution. For prototype demonstration, a cascaded line-scan camera composed of two imager units are prepared, with each unit having a single-pixel detector and being capable of resolving 71 spatial pixels along the slit. Hadamard transform multiplexing detection is applied to enhance the camera's signal-to-noise ratio (SNR). The MEMS encoding mask is resonantly driven at 250 Hz indicating an ideal frame-rate of 500 fps of the line-scan camera prototype. Further increase of frame-rate can be achieved through optimization of the MEMS actuator. Additionally, the MEMS encoding mask incorporates a self-referencing design which simplifies data acquisition process, thus enabling the camera system to work in a simple but efficient open-loop condition.

10.
Front Genet ; 10: 1286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998358

RESUMO

Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an "early shrinking to recent expanding" evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a "consistently shrinking" evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes.

11.
Opt Express ; 26(23): 30362-30370, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469910

RESUMO

A novel concept of on-chip Fourier transform spectrometer is proposed. It consists of semiconductor waveguide directional couplers and NEMS actuators. The optical path difference can be tuned by controlling the NEMS actuators to couple or decouple the directional couplers. With 9 stages of directional couplers, we demonstrate numerically that the spectral resolution can reach up to 4 nm in 1.5 µm to 1.8 µm wavelength range. Further enhancement can be achieved by increasing the number of integrated NEMS driven directional couplers. This design meets the requirement of small size, weight and power and may be useful in future on-chip spectroscopic sensors.

12.
Front Plant Sci ; 8: 1844, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123540

RESUMO

The Toll-interleukin-1 receptor (TIR) and Nucleotide-binding site (NBS) domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.

13.
Planta ; 246(4): 763-778, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28674753

RESUMO

MAIN CONCLUSION: The contribution of variations in coding regions or promoters to the changes in FAE1 expression levels have be quantified and compared in parallel by specifically designed swapping constructs. FATTY ACID ELONGATION1 (FAE1) is a key gene in control of erucic acid synthesis in plant seeds. The expression of FAE1 genes in Brassica oleracea and Capsella rubella, representatives of high and low erucic acid species, respectively, was characterized to provide insight into the regulation of very long-chain fatty-acid biosynthesis in seeds. Virtually, no methylation was detected either in B. oleracea or in C. rubella, suggesting that modification of promoter methylation might not be a predominant mechanism. Swapping constructs were specifically designed to quantify and compare the contribution of variations in coding regions or promoters to the changes in FAE1 expression levels in parallel. A significantly higher fold change in erucic acid content was observed when swapping coding regions rather than when swapping promoters, indicating that the coding region is a major determinant of the catalytic power of ß-ketoacyl-CoA synthase proteins. Common motifs have been proposed as essential for the preservation of basic gene expression patterns, such as seed-specific expression. However, the occurrence of variation in common cis-elements or the presence of species-specific cis-elements might be plausible mechanisms for changes in the expression levels in different organisms. In addition, conflicting observations in previous reports associated with FAE1 expression are discussed, and we suggest that caution should be taken when selecting a plant transformation vector and in interpreting the results obtained from vectors carrying the CaMV 35S promoter.


Assuntos
Acetiltransferases/metabolismo , Brassica/enzimologia , Capsella/enzimologia , Ácidos Erúcicos/metabolismo , Regulação da Expressão Gênica de Plantas , Acetiltransferases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Capsella/genética , Metilação de DNA , Evolução Molecular , Elongases de Ácidos Graxos , Genes Reporter , Motivos de Nucleotídeos , Fases de Leitura Aberta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Especificidade da Espécie
14.
G3 (Bethesda) ; 7(5): 1577-1585, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28364035

RESUMO

Plant resistance conferred by nucleotide binding site (NBS)-encoding resistance genes plays a key role in the defense against various pathogens throughout the entire plant life cycle. However, comparative analyses for the systematic evaluation and determination of the evolutionary modes of NBS-encoding genes among Solanaceae species are rare. In this study, 447, 255, and 306 NBS-encoding genes were identified from the genomes of potato, tomato, and pepper, respectively. These genes usually clustered as tandem arrays on chromosomes; few existed as singletons. Phylogenetic analysis indicated that three subclasses [TNLs (TIR-NBS-LRR), CNLs (CC-NBS-LRR), and RNLs (RPW8-NBS-LRR)] each formed a monophyletic clade and were distinguished by unique exon/intron structures and amino acid motif sequences. By comparing phylogenetic and systematic relationships, we inferred that the NBS-encoding genes in the present genomes of potato, tomato, and pepper were derived from 150 CNL, 22 TNL, and 4 RNL ancestral genes, and underwent independent gene loss and duplication events after speciation. The NBS-encoding genes therefore exhibit diverse and dynamic evolutionary patterns in the three Solanaceae species, giving rise to the discrepant gene numbers observed today. Potato shows a "consistent expansion" pattern, tomato exhibits a pattern of "first expansion and then contraction," and pepper presents a "shrinking" pattern. The earlier expansion of CNLs in the common ancestor led to the dominance of this subclass in gene numbers. However, RNLs remained at low copy numbers due to their specific functions. Along the evolutionary process of NBS-encoding genes in Solanaceae, species-specific tandem duplications contributed the most to gene expansions.


Assuntos
Evolução Molecular , Mutação com Ganho de Função , Modelos Genéticos , Proteínas de Plantas/genética , Solanaceae/genética , Sítios de Ligação , Especiação Genética , Mutação com Perda de Função , Nucleotídeos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Solanaceae/classificação
15.
Front Plant Sci ; 7: 998, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458476

RESUMO

A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny. According to this phylogeny, the plant SHMT gene family can be divided into two groups and four subgroups (Ia, Ib, IIa, and IIb). Belonging to the Subgroup Ia lineage, the rhg4 gene evolved from a recent duplication event in Glycine sp.. To further explore how the SCN-resistant allele emerged, both the rhg4 gene and its closest homolog, the rhg4h gene, were isolated from 33 cultivated and 68 wild soybean varieties. The results suggested that after gene duplication, the soybean rhg4 gene accumulated a higher number of non-synonymous mutations than rhg4h. Although a higher number of segregating sites and gene haplotypes were detected in wild soybeans than in cultivars, the SCN-resistant Rhg4 allele (represented by haplotype 4) was not found in wild varieties. Instead, a very similar allele, haplotype 3, was observed in wild soybeans at a frequency of 7.4%, although it lacked the two critical non-synonymous substitutions. Taken together, these findings support that the SCN-resistant Rhg4 allele likely emerged via artificial selection during the soybean domestication process, based on a SCN-sensitive allele inherited from wild soybeans.

16.
Virus Res ; 208: 189-98, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26103098

RESUMO

Soybean mosaic virus (SMV) is widely recognized as a highly damaging pathogen of soybean, and various strains/isolates have been reported to date. However, the pathogenic differences and phylogenetic relationships of these SMV strains/isolates have not been extensively studied. In the present work, by first obtaining 18 new genomic sequences of Chinese SMV strains/isolates and further compiling these with available data, we have explored the evolution of SMV from multiple aspects. First, as in other potyviruses, recombination has occurred frequently during SMV evolution, and a total of 32 independent events were detected. Second, using a maximum-likelihood method and removing recombinant fragments, a phylogeny covering 83 SMV sequences sampled from all over the world was reconstructed and the results showed four separate SMV clades, with clade I and II recovered for the first time. Third, the population structure analysis of SMV revealed significant genetic differentiations between China and two other countries (Korea and U.S.A.). Fourth, certain SMV-encoded genes, such as P1, HC-Pro and P3, exhibited higher non-synonymous substitution rate (dN) than synonymous substitution rate (dS), indicating that positive selection has influenced these genes. Finally, four Chinese SMV strains/isolates were selected for inoculation of both USA and Chinese differential soybean cultivars, and their pathogenic phenotypes were significantly different from that of the American strains. Overall, these findings have further broadened our understanding on SMV evolution, which would assist researchers to better deal with this harmful virus.


Assuntos
Evolução Molecular , Genoma Viral , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , China , Genômica , Dados de Sequência Molecular , Filogenia , Potyvirus/classificação , República da Coreia , Glycine max/virologia
17.
Virus Res ; 191: 125-33, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25107622

RESUMO

Widely known as a severe pathogen of bean plants, the bean common mosaic virus (BCMV) has been reported to infect soybeans only sporadically and the involved strains were all found in China regions. To explore variations among soybean-infecting BCMV strains, hundreds of soybean mosaic leave samples were collected throughout China, with a total of 30 BCMV isolates detected and their genomes sequenced. These newly obtained genomes, together with 16 other BCMV genomes available in GenBank were examined from multiple aspects to characterize BCMV evolutionary processes. Phylogenetic analysis showed that both soybean-infecting BCMVs (group I) and peanut-infecting BCMVs (group II) are distantly related to other BCMVs, suggesting ancestral differentiation and host adaptation. Genetic variation analysis showed that P1, P3 and 6K2 genes and the beginning portion of CP gene showed higher levels of variation relative to other genes. Moreover, selection analyses further confirmed that a number of sites within the P1 and P3 genes have suffered positive selection. These obtained BCMV sequences also exhibit high recombination frequencies, indicating a more dynamic evolutionary history. Finally, 12 different soybean cultivars were challenged with two BCMV isolates (DXH015 and HZZB011), with most of the cultivars successfully infected. These findings suggest that BCMV is indeed a potential threat to soybean production.


Assuntos
Genoma Viral , Glycine max/virologia , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , China , Genômica , Dados de Sequência Molecular , Filogenia , Potyvirus/classificação , Potyvirus/genética , Proteínas Virais/genética
18.
Plant Physiol ; 166(1): 217-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25052854

RESUMO

Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution.


Assuntos
Evolução Molecular , Fabaceae/genética , Família Multigênica , Deleção de Genes , Duplicação Gênica , Genoma de Planta , MicroRNAs/metabolismo , Filogenia
19.
J Environ Sci Health B ; 49(6): 381-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24762175

RESUMO

A soil enrichment culture (SEC) rapidly degraded 96% of 200 mg L(-1) neonicotinoid insecticide thiamethoxam (TMX) in MSM broth within 30 d; therefore, its metabolic pathway of TMX, bacterial diversity and plant growth-promoting rhizobacteria (PGPR) activities of the cultured isolates were studied. The SEC transformed TMX via the nitro reduction pathway to form nitrso, urea metabolites and via cleavage of the oxadiazine cycle to form a new metabolite, hydroxyl CLO-tri. In addition, 16S rRNA gene-denaturing gradient gel electrophoresis analysis revealed that uncultured rhizobacteria are predominant in the SEC broth and that 77.8% of the identified bacteria belonged to uncultured bacteria. A total of 31 cultured bacterial strains including six genera (Achromobacter, Agromyces, Ensifer, Mesorhizobium, Microbacterium and Pseudoxanthomonas) were isolated from the SEC broth. The 12 strains of Ensifer adhaerens have the ability to degrade TMX. All six selected bacteria showed PGPR activities. E. adhaerens TMX-23 and Agromyces mediolanus TMX-25 produced indole-3-acetic acid, whereas E. adhaerens TMX-23 and Mesorhizobium alhagi TMX-36 are N2-fixing bacteria. The six-isolated microbes were tolerant to 200 mg L(-1) TMX, and the growth of E. adhaerens was significantly enhanced by TMX, whereas that of Achromobacter sp. TMX-5 and Microbacterium sp.TMX-6 were enhanced slightly. The present study will help to explain the fate of TMX in the environment and its microbial degradation mechanism, as well as to facilitate future investigations of the mechanism through which TMX enhances plant vigor.


Assuntos
Inseticidas/metabolismo , Nitrocompostos/metabolismo , Oxazinas/metabolismo , Microbiologia do Solo , Tiazóis/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Neonicotinoides , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/metabolismo , RNA Ribossômico 16S , Rhizobiaceae/genética , Tiametoxam
20.
Appl Microbiol Biotechnol ; 97(9): 4065-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23274958

RESUMO

Thiamethoxam (THIA), a second generation neonicotinoid insecticide in the thianicotinyl subclass, is used worldwide. Environmental studies revealed that microbial degradation is the major mode of removal of this pesticide from soil. However, microbial transformation of THIA is poorly understood. In the present study, we isolated a bacterium able to degrade THIA from rhizosphere soil. The bacterium was identified as Ensifer adhaerens by its morphology and 16S ribosomal DNA sequence analysis. High-performance liquid chromatography and mass spectrometry analysis suggested that the major metabolic pathway of THIA in E. adhaerens TMX-23 involves the transformation of its N-nitroimino group (=N-NO2) to N-nitrosoimino (=N-NO) and urea (=O) metabolites. E. adhaerens TMX-23 is a nitrogen-fixing bacterium harboring two types of nifH genes in its genome, one of which is 98 % identical to the nifH gene in the cyanobacterium Calothrix sp. MCC-3A. E. adhaerens TMX-23 released various plant-growth-promoting substances including indole-3-acetic acid, exopolysaccharides, ammonia, HCN, and siderophores. Inoculation of E. adhaerens TMX-23 onto soybean seeds (Glycine max L.) with NaCl at 50, 100, or 154 mmol/L increased the seed germination rate by 14, 21, and 30 %, respectively. THIA at 10 mg/L had beneficial effects on E. adhaerens TMX-23, enhancing growth of the bacterium and its production of salicylic acid, an important plant phytohormone associated with plant defense responses against abiotic stress. The nitrogen-fixing and plant-growth-promoting rhizobacterium E. adhaerens TMX-23, which is able to degrade THIA, has the potential for bioaugmentation as well as to promote growth of field crops in THIA-contaminated soil.


Assuntos
Inseticidas/metabolismo , Nitrocompostos/metabolismo , Oxazinas/metabolismo , Rhizobiaceae/metabolismo , Tiazóis/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Neonicotinoides , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Rhizobiaceae/fisiologia , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Tiametoxam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA