Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stroke ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39224971

RESUMO

BACKGROUND: In ischemia, acidosis occurs in/around injured tissue and parallels disease progression. Therefore, targeting an acid-sensitive receptor offers unique advantages in achieving the spatial and temporal specificity required for therapeutic interventions. We previously demonstrated that increased expression of GPR68 (G protein-coupled receptor 68), a proton-sensitive G protein-coupled receptor, mitigates ischemic brain injury. Here, we investigated the mechanism underlying GPR68-dependent protection. METHODS: We performed biochemical and molecular analyses to examine poststroke signaling. We used in vitro brain slice cultures and in vivo mouse transient middle cerebral artery occlusion (tMCAO) models to investigate ischemia-induced injuries. RESULTS: GPR68 deletion reduced PERK (protein kinase R-like ER kinase) expression in mouse brain. Compared with the wild-type mice, the GPR68-/- (knockout) mice exhibited a faster decline in eIF2α (eukaryotic initiation factor-2α) phosphorylation after tMCAO. Ogerin, a positive modulator of GPR68, stimulated eIF2α phosphorylation at 3 to 6 hours after tMCAO, primarily in the ipsilateral brain tissue. Consistent with the changes in eIF2α phosphorylation, Ogerin enhanced tMCAO-induced reduction in protein synthesis in ipsilateral brain tissue. In organotypic cortical slices, Ogerin reduced pH 6 and oxygen-glucose deprivation-induced neurotoxicity. Following tMCAO, intravenous delivery of Ogerin reduced brain infarction in wild-type but not knockout mice. Coapplication of a PERK inhibitor abolished Ogerin-induced protection. Delayed Ogerin delivery at 5 hours after tMCAO remained protective, and Ogerin has a similar protective effect in females. Correlated with these findings, tMCAO induced GPR68 expression at 6 hours, and Ogerin alters post-tMCAO proinflammatory/anti-inflammatory cytokine/chemokine expression profile. CONCLUSIONS: These data demonstrate that GPR68 potentiation leads to neuroprotection, at least in part, through enhancing PERK-eIF2α activation in ischemic tissue but has little impact on healthy tissue.

2.
Mol Pain ; 20: 17448069241272149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39079948

RESUMO

Cadaverine is an endogenous metabolite produced by the gut microbiome with various activity in physiological and pathological conditions. However, whether cadaverine regulates pain or itch remains unclear. In this study, we first found that cadaverine may bind to histamine 4 receptor (H4R) with higher docking energy score using molecular docking simulations, suggesting cadaverine may act as an endogenous ligand for H4R. We subsequently found intradermal injection of cadaverine into the nape or cheek of mice induces a dose-dependent scratching response in mice, which was suppressed by a selective H4R antagonist JNJ-7777120, transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine and PLC inhibitor U73122, but not H1R antagonist or TRPA1 antagonist or TRPV4 antagonist. Consistently, cadaverine-induced itch was abolished in Trpv1-/- but not Trpa1-/- mice. Pharmacological analysis indicated that mast cells and opioid receptors were also involved in cadaverine-induced itch in mice. scRNA-Seq data analysis showed that H4R and TRPV1 are mainly co-expressed on NP2, NP3 and PEP1 DRG neurons. Calcium imaging analysis showed that cadaverine perfusion enhanced calcium influx in the dissociated dorsal root ganglion (DRG) neurons, which was suppressed by JNJ-7777120 and capsazepine, as well as in the DRG neurons from Trpv1-/- mice. Patch-clamp recordings found that cadaverine perfusion significantly increased the excitability of small diameter DRG neurons, and JNJ-7777120 abolished this effect, indicating involvement of H4R. Together, these results provide evidences that cadaverine is a novel endogenous pruritogens, which activates H4R/TRPV1 signaling pathways in the primary sensory neurons.


Assuntos
Cadaverina , Gânglios Espinais , Camundongos Endogâmicos C57BL , Prurido , Canais de Cátion TRPV , Animais , Prurido/metabolismo , Prurido/induzido quimicamente , Canais de Cátion TRPV/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Masculino , Cadaverina/análogos & derivados , Cadaverina/farmacologia , Cadaverina/metabolismo , Camundongos , Camundongos Knockout , Humanos , Mastócitos/metabolismo , Mastócitos/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Capsaicina/análogos & derivados
3.
Front Mol Neurosci ; 16: 1086285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937045

RESUMO

Introduction: Itch is a common symptom of many skin and systemic diseases. Identifying novel endogenous itch mediators and the downstream signaling pathways involved will contribute to the development of new strategies for the treatment of chronic itch. In the present study, we adopted behavioral testing, patch clamp recording and metabonomics analysis to investigate the role of agmatine in itch and the underlying mechanism. Methods: Behavioral analysis was used to evaluate the establishing of acute and chronic itch mice model, and to test the effects of different drugs or agents on mice itch behavior. Western blotting analysis was used to test the effect of agmatine on phosphorylation of ERK (p-ERK) expression in the spinal cord. Patch clamp recording was used to determine the effect agmatine on the excitability of DRG neurons and the role of ASIC3. Finally, the metabonomics analysis was performed to detect the concentration of agmatine in the affected skin under atopic dermatitis or psoriasis conditions. Results: We fused a mouse model and found that an intradermal injection of agmatine (an endogenous polyamine) into the nape of the neck or cheek induced histamine-independent scratching behavior in a dose-dependent manner. In addition, the ablation of nociceptive C-fibers by resiniferatoxin (RTX) abolished agmatine-induced scratching behavior. However, agmatine-induced itch was not affected by the pharmacological inhibition of either transient receptor potential vanilloid 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1); similar results were obtained from TRPV1-/- or TRPA1-/- mice. Furthermore, agmatine-induced itch was significantly suppressed by the administration of acid-sensing ion channel 3 (ASIC3) inhibitors, APETx2 or amiloride. Agmatine also induced the upregulation of p-ERK in the spinal cord; this effect was inhibited by amiloride. Current clamp recording showed that the acute perfusion of agmatine reduced the rheobase and increased the number of evoked action potentials in acute dissociated dorsal root ganglion (DRG) neurons while amiloride reversed agmatine-induced neuronal hyperexcitability. Finally, we identified significantly higher levels of agmatine in the affected skin of a mouse model of atopic dermatitis (AD) when compared to controls, and the scratching behavior of AD mice was significantly attenuated by blocking ASIC3. Discussion: Collectively, these results provide evidence that agmatine is a novel mediator of itch and induces itch via the activation of ASIC3. Targeting neuronal ASIC3 signaling may represent a novel strategy for the treatment of itch.

4.
Ann Transl Med ; 10(18): 972, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36267771

RESUMO

Background: Itch is a common symptom of skin diseases and significantly reduces patients' quality of life. Melatonin has anti-inflammatory and antioxidant effects. Our study examined the potential anti-itch effects of melatonin (N-acetyl-5-methoxytryptamine) in mice. Methods: We detected the effects of melatonin and its receptors on acute and chronic itch by conducting itching behavioral experiments in male C57 mice. Reactive oxygen species (ROS) levels and calcium ion (Ca2+) mobilization during acute itching production were explored using flow cytometry and calcium imaging techniques. Melatonin expression in the serum of the chronic itch model mice was determined by enzyme-linked immunoassays. Hematoxylin and eosin staining show the effects of melatonin on skin thickness in a chronic itch model. Cytokine and chemokine levels were determined by quantitative polymerase chain reaction. Results: We discovered that compound 48/80 (C48/80)- and chloroquine (CQ)-induced scratching were significantly decreased by intraperitoneal (i.p), intradermal, and intrathecal administration of melatonin in a dose-dependent manner in mice, and the co-administration of melatonin receptor antagonists abolished the anti-itch effects of i.d melatonin. The incubation of melatonin significantly decreased the intracellular ROS levels induced by C48/80 and CQ in cultured ND7/23 cells from a mouse x rat hybridoma nerve as neuron. Melatonin inhibited intracellular Ca2+ increases induced by CQ (but not C48/80) in cultured dorsal root ganglia (DRG) neurons. Melatonin (50 mg/kg i.p) attenuated imiquimod (IMQ)- or acetone and diethyl ether followed by acetone-ether-water (AEW)-induced chronic itch and epidermal hyperplasia in mice. Finally, melatonin treatment reduced the IMQ-induced expression of ST2 and interleukin-33 (IL-33) or the AEW-induced expression of interleukin 31 (IL-31) and interleukin 31 receptor A (IL-31 RA) in the mice. Conclusions: Collectively, our results indicate that melatonin attenuates acute and chronic itch, possibly via melatonin receptors, and its antioxidant, and anti-inflammatory effects in mice.

5.
Front Neurosci ; 15: 692217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113235

RESUMO

Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68-/- slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.

6.
FASEB J ; 35(4): e21461, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724568

RESUMO

Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Neuroproteção/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Prótons , Transdução de Sinais/fisiologia , Transcriptoma/fisiologia
7.
Front Mol Neurosci ; 14: 768731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095413

RESUMO

Itching is a common symptom of many skin or systemic diseases and has a negative impact on the quality of life. Zinc, one of the most important trace elements in an organism, plays an important role in the regulation of pain. Whether and how zinc regulates itching is largely unclear. Herein, we explored the role of Zn2+ in the regulation of acute and chronic itch in mice. It is found that intradermal injection (i.d.) of Zn2+ dose-dependently induced acute itch and transient receptor potential A1 (TRPA1) participated in Zn2+-induced acute itch in mice. Moreover, the pharmacological analysis showed the involvement of histamine, mast cells, opioid receptors, and capsaicin-sensitive C-fibers in Zn2+-induced acute itch in mice. Systemic administration of Zn2+ chelators, such as N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), pyrithione, and clioquinol were able to attenuate both acute itch and dry skin-induced chronic itch in mice. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the messenger RNA (mRNA) expression levels of zinc transporters (ZIPs and ZnTs) significantly changed in the dorsal root ganglia (DRG) under dry skin-induced chronic itch condition in mice. Activation of extracellular signal-regulated kinase (ERK) pathway was induced in the DRG and skin by the administration of zinc or under dry skin condition, which was inhibited by systemic administration of Zn2+ chelators. Finally, we found that the expression of GPR39 (a zinc-sensing GPCR) was significantly upregulated in the dry skin mice model and involved in the pathogenesis of chronic itch. Together, these results indicated that the TRPA1/GPR39/ERK axis mediated the zinc-induced itch and, thus, targeting zinc signaling may be a promising strategy for anti-itch therapy.

8.
Stroke ; 51(12): 3690-3700, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33059544

RESUMO

BACKGROUND AND PURPOSE: Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury. METHODS: We analyzed the expression of proton-sensitive GPCRs (G protein-coupled receptors) in the brain, examined acidosis-induced signaling in vitro, and studied neuronal injury using in vitro and in vivo mouse models. RESULTS: GPR68, a proton-sensitive GPCR, was present in both mouse and human brain, and elicited neuroprotection in acidotic and ischemic conditions. GPR68 exhibited wide expression in brain neurons and mediated acidosis-induced PKC (protein kinase C) activation. PKC inhibition exacerbated pH 6-induced neuronal injury in a GPR68-dependent manner. Consistent with its neuroprotective function, GPR68 overexpression alleviated middle cerebral artery occlusion-induced brain injury. CONCLUSIONS: These data expand our knowledge on neuronal acid signaling to include a neuroprotective metabotropic dimension and offer GPR68 as a novel therapeutic target to alleviate neuronal injuries in ischemia and multiple other neurological diseases.


Assuntos
Acidose/metabolismo , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/metabolismo , Neuroproteção/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , AVC Isquêmico/metabolismo , Camundongos , Camundongos Knockout , Neuroproteção/fisiologia , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Toxicon ; 179: 33-41, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32135199

RESUMO

The black-bellied hornet Vespa basalis is responsible for the large quantity of accidents and severe wasp envenomation in China. This study aims to identify the rat pain responses induced by experimental V. basalis sting and related-components in the venom. It was observed that unilateral intraplantar injection of crude V. basalis venom could induce several kinds of pain related behaviors in a dose-dependent manner including spontaneous pain, unilateral thermal and unilateral mechanical hypersensitivity at different time courses. Fourteen main fractions were separated from the crude venom of V. basalis using high performance liquid chromatography, among them, five components (1, 3, 4, 9 and 12) could absolutely mimic the crude venom-induced pain behaviors. According to the molecular mass and N-terminal sequence, the component 3 and 4 were identified as Mastoparan B and HP-1 respectively, the component 9 was speculated as a novel variant of HP-1/2. In addition, the other two sub-components (1-1 and 1-2) purified from component 1 cannot be determined. The results offered the key information about six active polypeptides from V. basalis contributing to pain responses, which might provide a basis for exploring mechanisms of wasp sting injury.


Assuntos
Venenos de Vespas/toxicidade , Vespas , Animais , China , Cromatografia Líquida de Alta Pressão , Peptídeos e Proteínas de Sinalização Intercelular/toxicidade , Dor , Peptídeos , Ratos , Toxinas Biológicas
11.
Acta Biochim Biophys Sin (Shanghai) ; 49(8): 713-721, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655185

RESUMO

Voltage-gated sodium channels (VGSCs) in peripheral nociceptive sensory neurons are critical to transmit pain signals. BmK I purified from the venom of scorpion Buthus martensi Karsch (BmK) has been demonstrated to be the primary contributor of envenomation-associated pain. However, the role of distinct VGSCs such as Nav1.6 in the induction and maintenance of pain behaviors induced by BmK I was ambiguous. Herein, using molecular and behavioral approaches we investigated the mRNA and protein expression profiles of Nav1.6 in rat DRG after intraplantar injection of BmK I and tested the pain behaviors after knockdown of Nav1.6 in BmK I-treated rats. It was shown that during induction and maintenance of pain responses induced by BmK I, the expression of Nav1.6 in DRG was found to be significantly increased at both mRNA and protein levels. The percentage of co-localization of Nav1.6 and Isolectin B4, a molecular marker of small diameter non-peptidergic DRG neurons, was increased at the maintenance phase of pain responses. Furthermore, spontaneous pain and mechanical allodynia, but not thermal hyperalgesia induced by BmK I, were significantly alleviated after knockdown of Nav1.6. These data strongly suggest that Nav1.6 plays an indispensable role in the peripheral pain hypersensitivity induced by BmK I.


Assuntos
Técnicas de Silenciamento de Genes , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Dor/genética , Venenos de Escorpião/toxicidade , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/induzido quimicamente , Dor/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Venenos de Escorpião/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA