Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 335: 122365, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572849

RESUMO

The widespread exploration and exploitation of crude oil has increased the prevalence of petroleum hydrocarbon pollution in the marine and coastal environment. Bioremediation of petroleum hydrocarbons using cell immobilization techniques is gaining increasing attention. In this study, the crude oil degradation performance of bacterial and fungal co-culture was optimized by entrapping both cells in sodium-alginate and polyvinyl alcohol composite beads. Results indicate that fungal cells remained active after entrapment and throughout the experiment, while bacterial cells were non-viable at the end of the experimental period in treatments with the bacterial-fungal ratio of 1:2. A remarkable decrease in surface tension from 72 mN/m to 36.51 mN/m was achieved in treatments with the bacterial-fungal ratio of 3:1. This resulted in a significant (P < 0.05) total petroleum hydrocarbon (TPH) removal rate of 89.4%, and the highest degradation of n-alkanes fractions (from 2129.01 mg/L to 118.53 mg/L), compared to the other treatments. Whereas PAHs removal was highest in treatments with the most fungal abundance (from 980.96 µg/L to 177.3 µg/L). Furthermore, enzymes analysis test revealed that catalase had the most effect on microbial degradation of the target substrate, while protease had no significant impact on the degradation process. High expression of almA and PAH-RHDa genes was achieved in the co-culture treatments, which correlated significantly (P < 0.05) with n-alkanes and PAHs removal, respectively. These results indicate that the application of immobilized bacterial and fungal cells in defined co-culture systems is an effective strategy for enhanced biodegradation of petroleum hydrocarbons in aqueous systems.


Assuntos
Acinetobacter , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Scedosporium , Petróleo/análise , Scedosporium/metabolismo , Técnicas de Cocultura , Hidrocarbonetos/metabolismo , Alcanos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Bioresour Technol ; 386: 129469, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451509

RESUMO

The anoxic/oxic systems are a widely used biological strategy for wastewater treatment. However, little is known about the performance and microbial community correlation of different combined bioreactors in the treatment of high-COD and high-salinity hydraulic fracturing flowback and produced water (HF-FPW). In this study, the performance of Up-flow anaerobic sludge bed-bio-contact oxidation reactor (UASB-BCOR) and Fixed-bed baffled reactor (FBR-BCOR) in treating HF-FPW was investigated and compared. The results suggested the FBR-BCOR could efficiently remove COD, SS, NH4+-N, and oil pollutants, and it exhibited better resistance to the negative interference of hydraulic shock load on it. Besides, the correlation analysis first disclosed the key functional genera during the degradation process, including Ignavibacterium, Ellin6067, and Zixibacteria. Moreover, network analysis revealed that the difference of microbial co-occurrence network structure is the main driving factor for the difference of bioreactor processing capacity. This work demonstrates the feasibility and potential of FBR-BCOR in treating HF-FPW.


Assuntos
Fraturamento Hidráulico , Microbiota , Poluentes Químicos da Água , Águas Residuárias , Água , Salinidade , Poluentes Químicos da Água/análise , Bactérias , Reatores Biológicos
3.
Sci Total Environ ; 881: 163366, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044349

RESUMO

To date, multiple studies have shown that the accumulation of microplastics (MPs)/nanoplastics (NPs) in the environment may lead to various problems. However, the effects of MPs/NPs on microbial communities and biogeochemical processes, particularly methane metabolism in cold seep sediments, have not been well elucidated. In this study, an indoor microcosm experiment for a period of 120 days exposure of MPs/NPs was conducted. The results showed that MPs/NPs addition did not significantly influence bacterial and archaeal richness in comparison with the control (p > 0.05), whereas higher levels of NPs (1 %, w/w) had a significant adverse effect on bacterial diversity (p < 0.05). Moreover, the bacterial community was more sensitive to the addition of MPs/NPs than the archaea, and Epsilonbacteraeota replaced Proteobacteria as the dominant phylum in the MPs/NPs treatments (except 0.2 % NPs). With respect to the co-occurrence relationships, network analysis showed that the presence of NPs, in comparison with MPs, reduced microbial network complexity. Finally, the presence of MPs/NPs decreased the abundance of mcrA, while promoting the abundance of pmoA. This study will help elucidate the responses of microbial communities to MPs/NPs and evaluate their effects on methane metabolism in cold seep ecosystems.


Assuntos
Microbiota , Plásticos , Plásticos/metabolismo , Polietileno/metabolismo , Bactérias/metabolismo , Archaea/metabolismo , Microplásticos/metabolismo , Metano/metabolismo
4.
Chemosphere ; 330: 138763, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094722

RESUMO

Oil pollution in intertidal zones is an important environmental issue that has serious adverse effects on coastal ecosystems. This study investigated the efficacy of a bacterial consortium constructed from petroleum degraders and biosurfactant producers in the bioremediation of oil-polluted sediment. Inoculation of the constructed consortium significantly enhanced the removal of C8-C40n-alkanes (80.2 ± 2.8% removal efficiency) and aromatic compounds (34.4 ± 10.8% removal efficiency) within 10 weeks. The consortium played dual functions of petroleum degradation and biosurfactant production, greatly improving microbial growth and metabolic activities. Real-time quantitative polymerase chain reaction (PCR) showed that the consortium markedly increased the proportions of indigenous alkane-degrading populations (up to 3.88-times higher than that of the control treatment). Microbial community analysis demonstrated that the exogenous consortium activated the degradation functions of indigenous microflora and promoted synergistic cooperation among microorganisms. Our findings indicated that supplementation of a bacterial consortium of petroleum degraders and biosurfactant producers is a promising bioremediation strategy for oil-polluted sediments.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Petróleo/análise , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Alcanos/metabolismo , Poluição por Petróleo/análise , Hidrocarbonetos/metabolismo
5.
J Hazard Mater ; 442: 129999, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152549

RESUMO

The distribution characteristics and drivers of carbazole (CZ) and polyhalogenated carbazoles are still poorly understood. In this study, 96 samples were collected around the Zhoushan Archipelago, and their distribution characteristics were assessed. The results showed that CZ, 36-CCZ, and 36-BCZ were the top three abundant congeners in most collected samples. The bioaccumulation analysis revealed that marine plants prefer to accumulate CZ and bromocarbazoles rather than chlorocarbazoles. Both the mean concentrations of total carbazole and its derivants (ΣCZDs), as well as individual congeners, are the highest in sediments around the berthing areas of cargo ships and oil tankers. Meanwhile, ΣCZDs of these sediments are significantly influenced by the geo-weighted displacement of ships (r = 0.61; p < 0.05), indicating the ballast water from these ships as potential contributor for marine CZDs. Moreover, the accumulation of CZ in plankton, planktonic origin of sedimentary organic matter, and relationship between CZ and C/N ratio (p < 0.05) in sediments support the scenario that plankton absorbs and takes CZ into the sediments. These findings will promote the understanding of the sources, environmental behaviors, and fates of marine CZDs.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Carbazóis , Navios , Água/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos
6.
Chemosphere ; 302: 134870, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537625

RESUMO

Fracturing flowback fluids (FFFs), which is generated from the process of oil and gas exploitation, is one of the major environmental concerns. In this study, a bacterial strain, Bacillus sp. SS15, capable of producing both bioflocculant (BF) and biosurfactant (BS), was isolated from oil-contaminated mudflat sediment. The BS produced by SS15 was identified as lipopeptide, which could reduce the surface tension of water from 74.2 mN/m to 36.6 mN/m with a critical micelle concentration of 44.4 mg/L. It also exhibited strong tolerance against a wide range of pH (2-12), temperature (4-60 °C), and salinity (0-100 g/L). Meanwhile, the BF produced by SS15 exhibited high flocculating activity (84.9%) for kaolin suspension, and was confirmed to be thermostable, salt-tolerant, and alkaliphilic. The combined treatment of bioremediation (introducing SS15 and BS) followed by flocculation (introducing BF) greatly promoted the removal of chroma (85.7% reduction), suspended solids (94.4% reduction), chemical oxygen demand (84.9% reduction), n-alkanes (50.0% reduction), and polycyclic aromatic hydrocarbons (66.5% reduction), respectively. The genome analysis showed that strain SS15 possessed abundant genes related to the synthesis of carbohydrate, protein, and lipid, which might play an important role in BF and BS synthesis. The findings in this study demonstrated that Bacillus sp. SS15 has promising prospect in the remediation of FFFs.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Biodegradação Ambiental , Floculação , Lipopeptídeos , Tensão Superficial , Tensoativos/metabolismo
7.
World J Microbiol Biotechnol ; 38(4): 68, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247078

RESUMO

Biosurfactants (BSs) are known for their remarkable properties, however, their commercial applications are hampered partly by the high production cost. To overcome this issue, a biosurfactant producing strain, Rhodotorula sp.CC01 was isolated using landfill leachate as nitrogen source, while olive oil was determined as the best sole carbon source. The BS produced by Rhodotorula sp.CC01 had oil displacement diameter of 19.90 ± 0.10 cm and could reduce the surface tension of water to 34.77 ± 0.63 mN/m. It was characterized as glycolipids by thin layer chromatography, FTIR spectra, and GC-MS analysis, with the critical micelle concentration of 70 mg/L. Meanwhile, the BS showed stability over a wide range of pH (2-12), salinity (0-100 g/L), and temperature (20-100 °C). During the cultivation process, BS was produced with a maximum rate of 163.33 mg L-1 h-1 and a maximum yield of 1360 mg/L at 50 h. In addition, the removal efficiency of NH4+-N reached 84.2% after 75 h cultivation with a maximum NH4+-N removal rate of 3.92 mg L-1 h-1. Moreover, Rhodotorula sp.CC01 has proven to be of great potential in remediating petroleum hydrocarbons, as revealed by chromogenic assays. Furthermore, genes related to nitrogen metabolism and glycolipid metabolism were found in this strain CC01 after annotating the genome data with KEGG database, such as narB, glycoprotein glucosyltransferase, acetyl-CoA C-acetyltransferase, LRA1, LRA3, and LRA4. The findings of this study prove a cost-effective strategy for the production of BS by yeast through the utilization of landfill leachate.


Assuntos
Petróleo , Rhodotorula , Poluentes Químicos da Água , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Nitrogênio/metabolismo , Petróleo/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Chemosphere ; 290: 133337, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933030

RESUMO

Microbial remediation has proven to be an effective technique for the cleanup of crude-oil contaminated sites. However, limited information exists on the dynamics involved in defined co-cultures of biosurfactant-producing bacteria and fungi in bioremediation processes. In this study, a fungal strain (Scedosporium sp. ZYY) capable of degrading petroleum hydrocarbons was isolated and co-cultured with biosurfactant-producing bacteria (Acinetobacter sp. Y2) to investigate their combined effect on crude-oil degradation. Results showed that the surface tension of the co-culture decreased from 63.12 to 47.58 mN m-1, indicating the secretion of biosurfactants in the culture. Meanwhile, the degradation rate of total petroleum hydrocarbon increased from 23.36% to 58.61% at the end of the 7-d incubation period. In addition, gas chromatography - mass spectrometry analysis showed a significant (P < 0.05) degradation from 3789.27 mg/L to 940.33 mg/L for n-alkanes and 1667.33 µg/L to 661.5 µg/L for polycyclic aromatic hydrocarbons. Moreover, RT-qPCR results revealed the high expression of alkB and CYP52 genes by Acinetobacter sp. Y2 and Scedosporium sp. ZYY respectively in the co-culture, which corelated positively (P < 0.01) with n-alkane removal. Finally, microbial growth assay which corresponded with Fluorescein diacetate hydrolysis activity, highlighted the synergistic behavior of both strains in tackling the crude oil. Findings in this study suggest that the combination of fungal strain and biosurfactant-producing bacteria effectively enhances the degradation of petroleum hydrocarbons, which could shed new light on the improvement of bioremediation strategies.


Assuntos
Petróleo , Bactérias/genética , Biodegradação Ambiental , Técnicas de Cocultura , Fungos , Hidrocarbonetos , Tensoativos
9.
Sci Total Environ ; 811: 152414, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923009

RESUMO

This research comprises a comparative study of the properties, rhl genes expression, and structural difference in rhamnolipids produced under different oxygen conditions via Pseudomonas sp. CH1. The critical micelle concentration (CMC) of rhamnolipids produced under aerobic conditions (RAO) was 100 mg/L. In contrast, rhamnolipids produced under anaerobic conditions (RNO) had a low CMC of 40 mg/L. RNO comprised six rhamnolipids homologs, and the proportion of mono-rhamnolipids was up to 87.83%; meanwhile, the percent ratio of di-rhamnolipids and mono-rhamnolipids in RAO was 63.1:36.9. Additionally, diversified applications for solubilization of hydrophobic pollutants and reduction in heavy oil viscosity were investigated. The addition of RNO greatly enhanced the solubility of phenanthrene in water, from 1.29 mg/L to 193.14 mg/L, a 148.7-fold increase. Moreover, the viscosity of heavy oil decreased by over 90% for both kinds of rhamnolipids, whereas RAO effectively reduced the viscosity even at a low temperature (10 °C). The findings of this study provide insights into the versatile potential applications of rhamnolipids produced under different oxygen conditions.


Assuntos
Pseudomonas aeruginosa , Tensoativos , Anaerobiose , Glicolipídeos
10.
Sci Total Environ ; 793: 148529, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171803

RESUMO

This study investigated the effect of immobilized biosurfactant-producing bacteria on the bioremediation of diesel oil-contaminated seawater. Initially, a biosurfactant-producing bacterium, LQ2, was isolated from a marine cold-seep region, and identified as Vibrio sp. The biosurfactant produced by LQ2 was characterized as a phospholipid, exhibiting high surface activity with strong stability. Meanwhile, the inoculation of biochar-immobilized LQ2 demonstrated superior efficiency in removing diesel oil (94.7%, reduction from 169.2 mg to 8.91 mg) over a seven-day period compared to free-cell culture (54.4%), through both biodegradation and adsorption. In addition, the microbial growth and activity were greatly enhanced with the addition of immobilized LQ2. Further experiment showed that degradation-related genes, alkB and CYP450-1, were 3.8 and 15.2 times higher in the immobilized LQ2 treatment, respectively, than those in the free cell treatment. The findings obtained in this study suggest the feasibility of applying immobilized biosurfactant-producing bacteria, namely LQ2, in treating diesel oil-contaminated seawater.


Assuntos
Gasolina , Vibrio , Biodegradação Ambiental , Carvão Vegetal , Água do Mar
11.
Bioresour Technol ; 335: 125267, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33992912

RESUMO

The multistage bio-contact oxidation reactor (BCOR) is a widely used biological strategy to treat wastewater, however, little is known about the performance and microbial community information of BCOR during the treatment of low-COD and high-salinity oilfield produced water. In this study, the performance of a multistage BCOR in treating produced water was investigated. The result suggested the BCOR could efficiently remove COD, BOD5, NH4+-N, and oil pollutants. Besides, high-throughput sequencing analysis revealed that oil content was the main variable in shaping the community structure. The highest total relative abundance of potential pollutants degraders in first BCOR stage suggested significant role of this stage in pollutants removal. In addition, the correlation analysis disclosed the key functional genera during the degradation process, including Rhodobacter, Citreibacter, and Roseovarius. Moreover, network analysis revealed that the microbial taxa within same module had strong ecological linkages and specific functions.


Assuntos
Microbiota , Salinidade , Reatores Biológicos , Campos de Petróleo e Gás , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
12.
Mar Pollut Bull ; 161(Pt A): 111710, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022494

RESUMO

Sediments were sampled from Hangzhou Bay (HB), the South China Sea (SCS), and Antarctica (AZ) to better understand the distribution characteristics and environmental fate of polychlorinated biphenyls (PCBs) at different latitudes. Numerous PCB congeners (68) were detected among the sampling sites, supporting the ubiquity of PCB congeners. High and low chlorinated congeners dominated the PCB profiles of AZ and SCS, respectively, whereas the PCB homologues were evenly distributed in the HB. As a fraction of low chlorinated PCBs originates from an exogenous input, the low mean ratios of ∑Tetra-CBs to ∑PCBs and ∑Tetra-CBs to the sum of ∑Tri- and ∑Di-CBs suggest that microbial transformation of PCBs is weak in marine surface sediments, if any occurs at all. Furthermore, PCB contamination levels in marine sediments may be primarily influenced by latitude rather than pollution sources. Thus, the findings of this study suggest that Antarctica is becoming a prospective hotspot for PCBs.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Regiões Antárticas , China , Monitoramento Ambiental , Sedimentos Geológicos , Bifenilos Policlorados/análise , Estudos Prospectivos , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 27(22): 27762-27772, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32399884

RESUMO

A biosurfactant (BS) is a surface-active metabolite that is secreted by microbial metabolism, and can be used as a substitute for chemically synthesized surfactants. The first and most critical step to the successful application of BSs is to isolate bacterial strains with strong BS-producing capabilities. In this study, a BS-producing Serratia marcescens ZCF25 was isolated from the sludge of an oil tanker. Through polyphasic characterization using Fourier-transform infrared spectroscopy, thin layer chromatography, and gas chromatography-mass spectrometry, the produced BS was classified as a lipopeptide; it can decrease the water surface tension from 72.0 to 29.50 mN m-1 and has a critical micelle concentration of 220 mg/L. The BS showed a high tolerance over a wide range of pH (2-12), temperature (50-100 °C), and salinity (10-100 g/L). Furthermore, the inoculation of S. marcescens ZCF25 with fracturing flowback fluids could significantly (P < 0.05) reduce the chemical oxygen demand, concentration of alkanes, and concentration of polycyclic aromatic hydrocarbons, with removal efficiencies of 48.9%, 65.57%, and 64%, respectively. This is the first study on the application of BS-producing S. marcescens to treat fracturing flowback fluids. S. marcescens ZCF25 is a promising candidate for use in various industrial and bioremediation applications. Graphical abstract.


Assuntos
Serratia marcescens , Esgotos , Biodegradação Ambiental , Tensão Superficial , Tensoativos
14.
Sci Total Environ ; 703: 134768, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31726304

RESUMO

In this study, the occurrence and distribution of microplastics in artificial reefs around the Ma'an Archipelago, a national marine ranching area in China, were investigated. The abundance of microplastics ranged from 0.2 ±â€¯0.1 to 0.6 ±â€¯0.2 items L-1 in surface water, 30.0 ±â€¯0.0 to 80.0 ±â€¯14.1 items kg-1 dry weight in the sediment, and 2.3 ±â€¯1.5 to 7.3 ±â€¯3.5 items individual-1 in fish. Most of the detected microplastics were fiber-shaped, blue or transparent, and smaller than 1 mm. Polyethylene, polypropylene, and poly(ethylene:propylene:diene) copolymer were the most abundant polymer types in the surface water samples, whereas cellophane was dominant in the sediment and fish. The appearance of microplastic pollution around the artificial reefs could be attributed mainly to the activities of the fisheries in the area, whereas the microplastic ingestion by fish was affected by the extent of microplastic contamination of the sediment. The results highlight the widespread presence of microplastics in the water, sediment, and biota of the artificial reefs around the Ma'an Archipelago, thereby improving understanding of the environmental risks posed by microplastics to marine artificial reef ecosystems and fisheries in general.


Assuntos
Microplásticos , Animais , China , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais , Peixes , Sedimentos Geológicos , Água
15.
Environ Sci Pollut Res Int ; 26(32): 33192-33201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31520386

RESUMO

A laboratory-scale study was conducted to investigate the effect of bioaugmentation (BA) and biostimulation (BS) on the remediation of oily sludge with high total petroleum hydrocarbon (TPH) content (269,000 mg/kg d.w. sludge). TPH concentration significantly decreased by 30.4% (P < 0.05) in the BS treatment after 13-week incubation, and 17.0 and 9.1% of TPH was removed in the BA and control treatments (amended with sterile water only), respectively. Aliphatic and other fractions (i.e., saturated n-alkanes and cyclic saturated alkanes) were reduced in the BS treatment, whereas no decrease in aromatic hydrocarbons occurred in any treatment. Gas chromatography-mass spectrometry analysis of aliphatic fractions showed that low-chain-length alkanes (C8-C20) were the most biodegradable fractions. The BS treatment supported fungal proliferation, with Sordariomycetes and Eurotiomycetes as the dominant classes. BS increased fungal diversity and decreased fungal abundance, and changed bacterial community structure. The findings show the potential of using BS to treat oily sludge with high TPH content. Graphical abstract.


Assuntos
Biodegradação Ambiental , Fungos/crescimento & desenvolvimento , Hidrocarbonetos/análise , Petróleo/análise , Alcanos , Proliferação de Células
16.
Environ Pollut ; 244: 827-833, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30390456

RESUMO

Microplastic particles are a global concern due to their widespread and growing threat to marine and coastal environments. To improve knowledge of microplastic pollution in China, we investigated 25 sediment samples collected with a box corer in the Southern Yellow Sea and East China Sea off the coast of China. The microplastics were extracted from sediments via density separation, after which they were observed under a microscope and characterized according to shape, color, and size, while polymer type identification was performed using micro-Fourier transform infrared spectroscopy. The abundance of microplastics in the offshore region of the Southern Yellow Sea and East China Sea was mapped. The mean concentration of microplastics at the 25 sites was 13.4 ±â€¯0.6 particles 100 g-1 dry weight (range: 6.0-24.0 particles 100 g-1 dry weight). Based on the categorization according to shape, color, and size, fiber (77%) was the most abundant shape, while blue (35%) and transparent (29%) were the most prevalent colors. In addition, the dominant size of microplastics was smaller than 1000 µm which accounted for 89%. Finally, polyethylene, polyethylene terephthalate, acrylic, polyester, cellulose, and cellophane were the most abundant types of microplastics identified. Our result highlighted the presence of microplastics in offshore sediments from the Yellow Sea and East China Sea, and provided useful information for evaluating the environmental risks posed by microplastics in China.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Polietileno/análise , Poluentes do Solo/química , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , China , Meio Ambiente , Oceanos e Mares , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...