Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods Appl Fluoresc ; 12(3)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38587171

RESUMO

Food contaminants pose a danger to human health, but rapid, sensitive and reliable food safety detection methods can offer a solution to this problem. In this study, an optical fiber ratiometric fluorescence sensing system based on carbon dots (CDs) and o-phenylenediamine (OPD) was constructed. The ratiometric fluorescence response of Cu2+and thiram was carried out by the fluorescence resonance energy transfer (FRET) between CDs and 2,3-diaminophenazine (ox-OPD, oxidized state o-phenylenediamine). The oxidation of OPD by Cu2+resulted in the formation of ox-OPD, which quenched the fluorescence of CDs and exhibited a new emission peak at 573 nm. The formation of a [dithiocarbamate-Cu2+] (DTC-Cu2+) complex by reacting thiram with Cu2+, inhibits the OPD oxidation reaction triggered by Cu2+, thus turning off the fluorescence signal of OPD-Cu2+. The as-established detection system presented excellent sensitivity and selectivity for the detection of Cu2+and thiram in the ranges of 1 ∼ 100µM and 5 ∼ 50µM, respectively. The lowest detection limits were 0.392µM for Cu2+and 0.522µM for thiram. Furthermore, actual sample analysis indicated that the sensor had the potential for Cu2+and thiram assays in real sample analysis.

3.
Angew Chem Int Ed Engl ; 63(19): e202316717, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477147

RESUMO

The electrolytes for lithium metal batteries (LMBs) are plagued by a low Li+ transference number (T+) of conventional lithium salts and inability to form a stable solid electrolyte interphase (SEI). Here, we synthesized a self-folded lithium salt, lithium 2-[2-(2-methoxy ethoxy)ethoxy]ethanesulfonyl(trifluoromethanesulfonyl) imide (LiETFSI), and comparatively studied with its structure analogue, lithium 1,1,1-trifluoro-N-[2-[2-(2-methoxyethoxy)ethoxy)]ethyl]methanesulfonamide (LiFEA). The special anion chemistry imparts the following new characteristics: i) In both LiFEA and LiETFSI, the ethylene oxide moiety efficiently captures Li+, resulting in a self-folded structure and high T+ around 0.8. ii) For LiFEA, a Li-N bond (2.069 Å) is revealed by single crystal X-ray diffraction, indicating that the FEA anion possesses a high donor number (DN) and thus an intensive interphase "self-cleaning" function for an ultra-thin and compact SEI. iii) Starting from LiFEA, an electron-withdrawing sulfone group is introduced near the N atom. The distance of Li-N is tuned from 2.069 Šin LiFEA to 4.367 Šin LiETFSI. This alteration enhances ionic separation, achieves a more balanced DN, and tunes the self-cleaning intensity for a reinforced SEI. Consequently, the fast charging/discharging capability of LMBs is progressively improved. This rationally tuned anion chemistry reshapes the interactions among Li+, anions, and solvents, presenting new prospects for advanced LMBs.

4.
Sci Rep ; 14(1): 7033, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528145

RESUMO

To enhance the security of image data transmission, and address the weaknesses of existing image encryption schemes based on chaotic systems, particularly concerning resistance to differential attacks and the unstable performance of chaotic systems, this article introduces an improved four-dimensional chaotic system and integrates evolutionary operators to propose an image encryption scheme. Firstly, a method for generating pseudo-random sequences associated with the plaintext is designed. The change rate of the ciphertext pixel value exceeds 0.9967 after a slight modification of the plaintext pixel value, significantly improving the plaintext sensitivity and the scheme's ability to resist selected plaintext attacks. Secondly, an individual rearrangement operation is introduced to achieve bit-level scrambling, and pixel-level scrambling is achieved by selection strategy. Subsequently, crossover and mutation operations are incorporated into image encryption. To reflect the randomness of the pairing, we adopt the pseudo-random sequence generated by the chaotic system to control the crossover and mutation operators, and a diffusion operation is performed on selected pixel pairs. Finally, ciphertext feedback is applied. Experimental results and performance analysis demonstrate that the proposed scheme not only enhances the security of encrypted images but also effectively resists noise and cropping attacks. This method effectively meets the high-security requirements of images in network transmission and provides new ideas for further research in the field of image encryption.

5.
Water Res ; 253: 121332, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377924

RESUMO

Photodegradation is critical to reduce the potent neurotoxic methylmercury (MeHg) in water and its subsequent accumulation along food chains. However, this process has been largely ignored in rice paddies, which are hotspots of MeHg production and receive about a quarter of the world's developed freshwater resources. Here, we reported that significant MeHg photodegradation, primarily mediated by hydroxyl radicals, occurs in the overlying water during rice growth. By incorporating field-measured light interception into a rice paddy biogeochemistry model, as well as photodegradation rates obtained from 42 paddy soils stretching ∼3500 km across China, we estimated that photodegradation reduced MeHg concentrations in paddy water and rice by 82 % and 11 %, respectively. Without photodegradation, paddy water could be a significant MeHg source for downstream ecosystems, with an annual export of 178 - 856 kg MeHg to downstream waters in China, the largest rice producer. These findings suggest that photodegradation in paddy water is critical for preventing greater quantities of MeHg entering human food webs.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Humanos , Mercúrio/análise , Ecossistema , Água , Fotólise , Poluentes do Solo/análise , Monitoramento Ambiental , Solo , Oryza/metabolismo
6.
Adv Sci (Weinh) ; 11(15): e2309204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38239040

RESUMO

The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo-regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD-L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo-regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self-delivery nano-PROTACs may provide a new insight for chemotherapy-enabled tumor immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Quimera de Direcionamento de Proteólise , Proteínas Nucleares , Linhagem Celular Tumoral , Fatores de Transcrição , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Imunoterapia , Lactatos/farmacologia , Microambiente Tumoral , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
7.
J Med Virol ; 95(12): e29278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088537

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22,995 and 28,866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Células CACO-2 , Recombinação Homóloga , Glicoproteína da Espícula de Coronavírus
8.
ACS Nano ; 17(19): 19398-19409, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37781911

RESUMO

Solid polymer electrolytes (SPEs) are the key components for all-solid-state lithium metal batteries with high energy density and intrinsic safety. However, the low lithium ion transference number (t+) of a conventional SPE and its unstable electrolyte/electrode interface cannot guarantee long-term stable operation. Herein, asymmetric trihalogenated aromatic lithium salts, i.e., lithium (3,4,5-trifluorobenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiFFF) and lithium (4-bromo-3,5-difluorobenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiFBF), are synthesized for polymer electrolytes. They exhibit higher t+ values and better compatibility with Li metal than conventional lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Due to the trihalogenated aromatic anions, LiFFF- and LiFBF-based electrolytes are prone to generate an LiF- and LiBr-rich solid electrolyte interphase (SEI), therefore increasing the stability of the solid electrolyte/anode interface. Particularly, LiFBF could induce a LiF/LiBr hybrid SEI, where LiF shows a high Young's modulus and high surface energy for homogenizing Li ion flux and LiBr exhibits an extremely low Li ion diffusion barrier in the SEI layer. As a result, the Li/Li symmetric cells could remain stable for more than 1200 h without a short circuit and the LiFePO4/Li batteries showed superb electrochemical performance over 1200 cycles at 1 C. This work provides valuable insights from the perspective of lithium salt molecular structures for high-performance all-solid-state lithium metal batteries.

9.
Nat Commun ; 14(1): 6832, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884553

RESUMO

Increasing evidence shows the African lineage Zika virus (ZIKV) displays a more severe neurovirulence compared to the Asian ZIKV. However, viral determinants and the underlying mechanisms of enhanced virulence phenotype remain largely unknown. Herein, we identify a panel of amino acid substitutions that are unique to the African lineage of ZIKVs compared to the Asian lineage by phylogenetic analysis and sequence alignment. We then utilize reverse genetic technology to generate recombinant ZIKVs incorporating these lineage-specific substitutions based on an infectious cDNA clone of Asian ZIKV. Through in vitro characterization, we discover a mutant virus with a lysine to arginine substitution at position 101 of capsid (C) protein (termed K101R) displays a larger plaque phenotype, and replicates more efficiently in various cell lines. Moreover, K101R replicates more efficiently in mouse brains and induces stronger inflammatory responses than the wild type (WT) virus in neonatal mice. Finally, a combined analysis reveals the K101R substitution promotes the production of mature C protein without affecting its binding to viral RNA. Our study identifies the role of K101R substitution in the C protein in contributing to the enhanced virulent phenotype of the African lineage ZIKV, which expands our understanding of the complexity of ZIKV proteins.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Substituição de Aminoácidos , Filogenia , Replicação Viral/genética
10.
ACS Nano ; 17(17): 17169-17179, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655688

RESUMO

The low reversibility of Li deposition/stripping in conventional carbonate electrolytes hinders the development of lithium metal batteries. Herein, we proposed a combination of solvents with a moderate donor number (DN) and LiNO3 as the sole salt, which has rarely been attempted due to its low solubility or dissociation degree in common solvents. It is found that the DN value of solvents is highly correlated to the reversibility of Li deposition behavior when LiNO3 is applied as the sole salt. The combination of LiNO3 and solvents with moderate DN behaves like a quasi-concentrated electrolyte even at a common or moderate concentration, while neither the solvents with poor solubility and low dissociation for LiNO3 (which usually corresponds to a low DN) nor the solvents with high dissociation for LiNO3 (which usually corresponds to an overly high DN) can achieve a high reversibility for low conductivity or excessive solvent decomposition. As a result, a Coulombic efficiency as high as 99.6% for Li deposition/stripping is achieved with the optimized combination. We believe this work will give a better understanding of the role of anions and solvents in the regulation of the solvation structure, and DN can be utilized as an important guideline to sieve suitable solvents for LiNO3 as the main salt to exhibit intriguing properties beyond traditional cognition.

11.
Nat Commun ; 14(1): 5541, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684223

RESUMO

Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Trofoblastos , Placenta , Organoides
12.
Angew Chem Int Ed Engl ; 62(35): e202306948, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408357

RESUMO

Improved durability, enhanced interfacial stability, and room temperature applicability are desirable properties for all-solid-state lithium metal batteries (ASSLMBs), yet these desired properties are rarely achieved simultaneously. Here, in this work, it is noticed that the huge resistance at Li metal/electrolyte interface dominantly impeded the normal cycling of ASSLMBs especially at around room temperature (<30 °C). Accordingly, a supramolecular polymer ion conductor (SPC) with "weak solvation" of Li+ was prepared. Benefiting from the halogen-bonding interaction between the electron-deficient iodine atom (on 1,4-diiodotetrafluorobenzene) and electron-rich oxygen atoms (on ethylene oxide), the O-Li+ coordination was significantly weakened. Therefore, the SPC achieves rapid Li+ transport with high Li+ transference number, and importantly, derives a unique Li2 O-rich SEI with low interfacial resistance on lithium metal surface, therefore enabling stable cycling of ASSLMBs even down to 10 °C. This work is a new exploration of halogen-bonding chemistry in solid polymer electrolyte and highlights the importance of "weak solvation" of Li+ in the solid-state electrolyte for room temperature ASSLMBs.

13.
Virol Sin ; 38(4): 559-567, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290559

RESUMO

Cap-dependent endonuclease (CEN) in the polymerase acidic protein (PA) of influenza A virus (IAV) represents a promising drug target due to its critical role in viral gene transcription. The CEN inhibitor, baloxavir marboxil (BXM), was approved in Japan and the US in 2018 and several other countries subsequently. Along with the clinical use of BXM, the emergence and spread of IAV variants with reduced susceptibility to BXM have aroused serious concern. Herein, we comprehensively characterized the in vitro and in vivo antiviral activities of ZX-7101A, an analogue of BXM. The active form of prodrug ZX-7101 showed broad-spectrum antiviral potency against various IAV subtypes, including pH1N1, H3N2, H7N9 and H9N2, in MDCK cells, and the 50% effective concentration (EC50) was calculated to nanomole level and comparable to that of baloxavir acid (BXA), the active form of BXM. Furthermore, in vivo assays showed that administration of ZX-7101A conferred significant protection against lethal pH1N1 challenge in mice, with reduced viral RNA loads and alleviated pulmonary damage. Importantly, serial passaging of H1N1 virus in MDCK cells under selection pressure of ZX-7101 led to a resistant variant at the 15th passage. Reverse genetic and sequencing analysis demonstrated that a single E18G substitution in the PA subunit contributed to the reduced susceptibility to both ZX-7101 and BXA. Taken together, our results not only characterized a new CEN inhibitor of IAV but also identified a novel amino acid substitution responsible for CEN inhibitor resistance, which provides critical clues for future drug development and drug resistance surveillance.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Tiepinas , Animais , Camundongos , Humanos , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Endonucleases/genética , Endonucleases/química , Endonucleases/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Farmacorresistência Viral/genética
14.
Mol Immunol ; 159: 46-57, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271009

RESUMO

Synovial fibrosis is a driver in the progression of osteoarthritis (OA). Fibroblast growth factor 10 (FGF10) has prominent anti-fibrotic effects in many diseases. Thus, we explored the anti-fibrosis effects of FGF10 in OA synovial tissue. In vitro, fibroblast-like synoviocytes (FLSs) were isolated from OA synovial tissue and stimulated with TGF-ß to establish a cell model of fibrosis. After treatment with FGF10, we assessed the effects on FLS proliferation and migration using CCK-8, EdU, and scratch assays, and collagen production was observed using Sirius Red Stain. The JAK2/STAT3 pathway and expression of fibrotic markers were evaluated through western blotting (WB) and immunofluorescence (IF). In vivo, we treated mice with OA induced by surgical destabilization of the medial meniscus (DMM) with FGF10 and assessed the anti-OA effect using histological and immunohistochemical (IHC) staining of MMP13, and fibrosis was evaluated using HE and Masson's trichrome staining. The expression of IL-6/JAK2/STAT3 pathway components was determined using ELISA, WB, IHC, and IF. In vitro, FGF10 inhibited TGF-ß-induced FLS proliferation and migration, decreased collagen deposition, and improved synovial fibrosis. Moreover, FGF10 mitigated synovial fibrosis and improved the symptoms of OA in DMM-induced OA mice. Overall, FGF10 had promising anti-fibrotic effects on FLSs and improved OA symptoms in mice. The IL-6/STAT3/JAK2 pathway plays key roles in the anti-fibrosis effect of FGF10. This study is the first to demonstrate that FGF10 inhibited synovial fibrosis and attenuated the progression of OA by inhibiting the IL-6/JAK2/STAT3 pathway.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Interleucina-6 , Osteoartrite , Animais , Camundongos , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fibroblastos , Interleucina-6/metabolismo , Osteoartrite/patologia , Membrana Sinovial/patologia , Fator de Crescimento Transformador beta/metabolismo
15.
Cell Discov ; 9(1): 59, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330497

RESUMO

Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.

16.
Viruses ; 15(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243244

RESUMO

The SARS-CoV-2 genomic data continue to grow, providing valuable information for researchers and public health officials. Genomic analysis of these data sheds light on the transmission and evolution of the virus. To aid in SARS-CoV-2 genomic analysis, many web resources have been developed to store, collate, analyze, and visualize the genomic data. This review summarizes web resources used for the SARS-CoV-2 genomic epidemiology, covering data management and sharing, genomic annotation, analysis, and variant tracking. The challenges and further expectations for these web resources are also discussed. Finally, we highlight the importance and need for continued development and improvement of related web resources to effectively track the spread and understand the evolution of the virus.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Genômica , Saúde Pública , Pesquisadores
17.
ACS Appl Mater Interfaces ; 15(9): 12161-12170, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812348

RESUMO

Lithium-ion capacitors (LICs) attract enormous attention because of the urgent demands for high power and energy density devices. However, the intrinsic imbalance between anodes and cathodes with different charge-storage mechanisms blocks the further improvement in energy and power density. MXenes, novel two-dimensional materials with metallic conductivity, accordion-like structure, and regulable interlayer spacing, are widely employed in electrochemical energy storage devices. Herein, we propose a holey Ti3C2 MXene-derived composite (pTi3C2/C) with enhanced kinetics for LICs. This strategy effectively decreases the surface groups (-F and -O) and generates expanded interplanar spacing. The in-plane pores of Ti3C2Tx lead to increased active sites and accelerated lithium-ion diffusion kinetics. Benefiting from the expanded interplanar spacing and accelerated lithium-ion diffusion, the pTi3C2/C as an anode implements excellent electrochemical property (capacity retention about 80% after 2000 cycles). Furthermore, the LIC fabricated with a pTi3C2/C anode and an activated carbon cathode displays a maximum energy density of 110 Wh kg-1 and a considerable energy density of 71 Wh kg-1 at 4673 W kg-1. This work provides an effective strategy to achieve high antioxidant capability and boosted electrochemical properties, which represents a new exploration of structural design and tuneable surface chemistry for MXene in LICs.

18.
Emerg Infect Dis ; 29(2): 371-380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692451

RESUMO

The Omicron variant of SARS-CoV-2 has become dominant in most countries and has raised significant global health concerns. As a global commerce center, New York, New York, USA, constantly faces the risk for multiple variant introductions of SARS-CoV-2. To elucidate the introduction and transmission of the Omicron variant in the city of New York, we created a comprehensive genomic and epidemiologic analysis of 392 Omicron virus specimens collected during November 25-December 11, 2021. We found evidence of 4 independent introductions of Omicron subclades, including the Omicron subclade BA.1.1 with defining substitution of R346K in the spike protein. The continuous genetic divergence within each Omicron subclade revealed their local community transmission and co-circulation in New York, including both household and workplace transmissions supported by epidemiologic evidence. Our study highlights the urgent need for enhanced genomic surveillance and effective response planning for better prevention and management of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , New York/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Comércio
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122232, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525811

RESUMO

In recent years, solid state terahertz (THz) modulators have obtained rapid progress with the widespread use of two-dimensional (2D) materials in the field of THz; however, challenges remain in preparing flexible THz modulators. In this study, flexible ferromagnetic nematic materials were prepared by doping thermotropic nematic liquid crystals 5CB into magnetic fluids, and the influence of water was reduced by a self-made cyclic olefin copolymer (COC) microfluidic chip. THz modulation characteristics of magnetic fluid and ferromagnetic nematic liquid crystal (FNLC) under the induction of external magnetic field were compared using a THz time domain spectroscopy system. Under the action of a 91 mT magnetic field, the magnetic fluid has a maximum modulation depth (MD) of 54%. Under the same magnetic field, the maximum MD of the FNLC materials increase to 78% because of the rearrangement of Fe3O4 nanoparticles induced by the topological defect of the liquid crystal. We demonstrate that the magneto-optical effect is significantly enhanced in the ferromagnetic nematic liquid crystal hybrid system. This strategy of doping thermotropic nematic liquid crystals to enhance the magneto-optical effect has great potential for THz filtering, modulation, and sensing applications.

20.
J Med Virol ; 95(1): e28290, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367083

RESUMO

The geographic range of Zika virus (ZIKV) has expanded from Asia to the Americas, leading to the 2015-2016 pandemic with enhanced neurovirulence. At present, ZIKV is continuously circulating in many Southeast Asian countries. Unfortunately, the persistent evolution of ZIKV in Southeast Asia and its influence on the biological characteristics of the virus remain incompletely understood. In this study, the in vitro and in vivo properties of a new ZIKV isolate obtained from Cambodia in 2019 (CAM/2019) were characterized and compared with those of the Cambodian strain (CAM/2010). Compared with CAM/2010, the CAM/2019 virus showed similar plaque morphology and growth curves in cell cultures and induced comparable viremia and organ viral loads profiles in both BALB/c and A129 (IFNAR1-/- ) mice upon intraperitoneal (i.p.) inoculation. Remarkably, the CAM/2019 virus exhibited enhanced neurovirulence in neonatal mice compared with CAM/2010, with a 74-fold reduction in the 50% lethal dose (LD50 ). Consistently, CAM/2019 produced higher viral loads in the brains of BALB/c neonatal mice than CAM/2010 did. Sequence alignment showed that the CAM/2019 virus has acquired 12 amino acid substitutions, several of which were found to be associated with neurovirulence. In particular, the CAM/2019 virus shared an A1204T substitution in NS2A with the Thai isolate SI-BKK02 that was isolated from a microcephaly case. Taken together, our results indicate that a ZIKV strain isolated with specific mutations has emerged in Cambodia, highlighting the need for extensive molecular and disease surveillance in Cambodia and other Asian countries.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Filogenia , Infecção por Zika virus/epidemiologia , Camboja/epidemiologia , Ásia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...