Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Langmuir ; 40(19): 10107-10114, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691012

RESUMO

Boron nitride nanosheets (BNNS) are expected to be ideal fillers because of their high thermal conductivity and excellent electrical insulation. However, it is still an open challenge to produce BNNS on a large scale using ecofriendly solvents. Here, first, we demonstrate an effective liquid exfoliation method for producing BNNS via utilizing deep eutectic solvents (DES) composed of D,L-menthol and various acids with the assistance of ultrasonication. The results show that the BNNSs with sizes of 1-2 µm in width and 6-8 nm in thickness were successfully exfoliated with a DES formulation of D,L-menthol and decanoic acid. Second, the obtained BNNSs were used for fabricating 1,6-hexanediol diacrylate@polydopamine functionalized BNNS (HDDA@BNNSs-PDA) core-shell microspheres via a Pickering emulsion method. Furthermore, these microspheres were incorporated into a polyvinylidene fluoride (PVDF) matrix to construct 3D thermally conductive networks, leading to a substantial enhancement in the thermal conductivity of the resulting composites. Impressively, the composites with only 25 wt % of BNNS loading reach a high thermal conductivity of 3.20 W/m K, which is a 1500% increase over the pure polymer matrix. This work not only provides a significant way for producing BNNSs ecofriendly but also demonstrates a tactic for constructing 3D thermally conductive networks.

2.
Comput Biol Med ; 176: 108609, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38772056

RESUMO

Semi-supervised medical image segmentation presents a compelling approach to streamline large-scale image analysis, alleviating annotation burdens while maintaining comparable performance. Despite recent strides in cross-supervised training paradigms, challenges persist in addressing sub-network disagreement and training efficiency and reliability. In response, our paper introduces a novel cross-supervised learning framework, Quality-driven Deep Cross-supervised Learning Network (QDC-Net). QDC-Net incorporates both an evidential sub-network and an vanilla sub-network, leveraging their complementary strengths to effectively handle disagreement. To enable the reliability and efficiency of semi-supervised training, we introduce a real-time quality estimation of the model's segmentation performance and propose a directional cross-training approach through the design of directional weights. We further design a truncated form of sample-wise loss weighting to mitigate the impact of inaccurate predictions and collapsed samples in semi-supervised training. Extensive experiments on LA and Pancreas-CT datasets demonstrate that QDC-Net surpasses other state-of-the-art methods in semi-supervised medical image segmentation. Code release is available at https://github.com/Medsemiseg.

3.
Int J Oral Sci ; 16(1): 40, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740746

RESUMO

Oxidative stress is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease (AD), particularly in the early stages of the disease. The multiplicity advantages of stem cell transplantation make it fascinating therapeutic strategy for many neurodegenerative diseases. We herein demonstrated that human dental pulp stem cells (hDPSCs) mediated oxidative stress improvement and neuroreparative effects in in vitro AD models, playing critical roles in regulating the polarization of hyperreactive microglia cells and the recovery of damaged neurons. Importantly, these therapeutic effects were reflected in 10-month-old 3xTg-AD mice after a single transplantation of hDPSCs, with the treated mice showing significant improvement in cognitive function and neuropathological features. Mechanistically, antioxidant and neuroprotective effects, as well as cognitive enhancements elicited by hDPSCs, were at least partially mediated by Nrf2 nuclear accumulation and downstream antioxidant enzymes expression through the activation of the AKT-GSK3ß-Nrf2 signaling pathway. In conclusion, our findings corroborated the neuroprotective capacity of hDPSCs to reshape the neuropathological microenvironment in both in vitro and in vivo AD models, which may be a tremendous potential therapeutic candidate for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Polpa Dentária , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Polpa Dentária/citologia , Doença de Alzheimer/terapia , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças , Transplante de Células-Tronco , Células-Tronco , Camundongos Transgênicos
4.
Chin J Integr Med ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565799

RESUMO

Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.

5.
J Chromatogr Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576204

RESUMO

An analytical method was developed for the screening of 172 veterinary drugs in traditional Chinese medicine Galli Gigerii Endothelium Corneum by high-performance liquid chromatography tandem mass spectrometry. The samples were pretreated by a modified QuEChERS method. A Zorbax Eclipse plus C18 column (1.8 µm, 3.0 × 150 mm2, Agilent) was used for the separation of analytes by gradient elution. All analytes were detected by electrospray ionization mass spectrometry with multiple reaction monitoring mode. Good linearity with R ≥ 0.99 was exhibited for all analytes within the respective range. The recoveries of all monitored analytes ranged from 55.4 to 127.6% at three spiked levels (limit of quantitation-LOQ, 2-fold LOQ, 10-fold LOQ), with relative standard deviations <17.8%. The estimated LOQ levels were 0.2-20 µg/kg. The application of this method provides a reference for the safety control of traditional Chinese medicines.

6.
Opt Express ; 32(7): 11763-11773, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571016

RESUMO

We propose and experimentally demonstrate a parallel pulsed chaos light detection and ranging (LiDAR) system with a high peak power, parallelism, and anti-interference. The system generates chaotic microcombs based on a chip-scale Si3N4 microresonator. After passing through an acousto-optic modulator, the continuous-wave chaotic microcomb can be transformed into a pulsed chaotic microcomb, in which each comb line provides pulsed chaos. Thus, a parallel pulsed chaos signal is generated. Using the parallel pulsed chaos as the transmission signal of LiDAR, we successfully realize a 4-m three-dimensional imaging experiment using a microelectromechanical mirror for laser scanning. The experimental results indicate that the parallel pulsed chaos LiDAR can detect twice as many pixels as direct detection continuous wave parallel chaos LiDAR under a transmission power of -6 dBm, a duty cycle of 25%, and a pulse repetition frequency of 100 kHz. By further increasing the transmission power to 10 dBm, we acquire an 11 cm × 10 cm image of a target scene with a resolution of 30 × 50 pixels. Finally, the anti-jamming ability of the system is evaluated, and the results show that the system can withstand interferences of at least 15 dB.

7.
PLoS One ; 19(4): e0301986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626158

RESUMO

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Magnésio , Esgotos , Adsorção , Carvão Vegetal , Fósforo/química , Cinética , Poluentes Químicos da Água/análise
8.
Neuroreport ; 35(9): 577-583, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38687887

RESUMO

Pyroptosis, a form of programmed cell death, drives inflammation in the context of cerebral ischemia/reperfusion. The molecular mechanism of pyroptosis underlying ischemia/reperfusion, however, is not fully understood. The transient middle cerebral artery occlusion was applied to wild-type and caspase-1 knockout mice. 2,3,5-Triphenyltetrazolium chloride-staining and immunohistochemistry were used to identify the ischemic region, and western blot and immunofluorescence for the examination of neuronal pyroptosis. The expression of inflammatory factors and the behavioral function assessments were further conducted to examine the effects of caspase-1 knockout on protection against ischemia/reperfusion injury. Ischemia/reperfusion injury increased pyroptosis-related signals represented by the overexpression of pyroptosis-related proteins including caspase-1 and gasdermin D (GSDMD). Meanwhile, the number of GSDMD positive neurons increased in penumbra by immunofluorescence staining. Compared with wild-type mice, those with caspase-1 knockout exhibited decreased levels of pyroptosis-related proteins following ischemia/reperfusion. Furthermore, ischemia/reperfusion attack-induced brain infarction, cerebral edema, inflammatory factors, and neurological outcomes were partially improved in caspase-1 knockout mice. The data indicate that pyroptosis participates in ischemia/reperfusion induced-damage, and the caspase-1 might be involved, it provides some new insights into the molecular mechanism of ischemia.


Assuntos
Caspase 1 , Infarto da Artéria Cerebral Média , Camundongos Knockout , Piroptose , Traumatismo por Reperfusão , Animais , Piroptose/fisiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Caspase 1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Camundongos Endogâmicos C57BL , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia
9.
Biochem Pharmacol ; 224: 116234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670436

RESUMO

Ionizing radiation, a standard therapeutic approach for lung cancer, often leads to cellular senescence and the induction of epithelial-mesenchymal transition (EMT), posing significant challenges in treatment efficacy and cancer progression. Overcoming these obstacles is crucial for enhancing therapeutic outcomes in lung cancer management. This study investigates the effects of ionizing radiation and gemcitabine on lung cancer cells, with a focus on induced senescence, EMT, and apoptosis. Human-derived A549, PC-9, and mouse-derived Lewis lung carcinoma cells exposed to 10 Gy X-ray irradiation exhibited senescence, as indicated by morphological changes, ß-galactosidase staining, and cell cycle arrest through the p53-p21 pathway. Ionizing radiation also promoted EMT via TGFß/SMAD signaling, evidenced by increased TGFß1 levels, altered EMT marker expressions, and enhanced cell migration. Gemcitabine, a first-line lung cancer treatment, was shown to enhance apoptosis in senescent cells caused by radiation. It inhibited cell proliferation, induced mitochondrial damage, and triggered caspase-mediated apoptosis, thus mitigating EMT in vitro. Furthermore, in vivo studies using a lung cancer mouse model revealed that gemcitabine, combined with radiation, significantly reduced tumor volume and weight, extended survival, and suppressed malignancy indices in irradiated tumors. Collectively, these findings demonstrate that gemcitabine enhances the therapeutic efficacy against radiation-resistant lung cancer cells, both by inducing apoptosis in senescent cells and inhibiting EMT, offering potential improvements in lung cancer treatment strategies.


Assuntos
Antimetabólitos Antineoplásicos , Senescência Celular , Desoxicitidina , Transição Epitelial-Mesenquimal , Gencitabina , Neoplasias Pulmonares , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Animais , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Células A549 , Radiação Ionizante , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação
10.
J Exp Child Psychol ; 243: 105917, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579588

RESUMO

The difference between the audiovisual incongruent condition and the audiovisual congruent condition is known as cross-modal conflict, which is an important behavioral index to measure the conflict control function. Previous studies have found conflict control deficits in children with attention-deficit/hyperactivity disorder (ADHD), but it is not clear whether and how cross-modal conflict occurs in children with ADHD at different processing levels. The current study adopted the cross-modal matching paradigm to recruit 25 children with ADHD (19 boys and 6 girls) and 24 TD children (17 boys and 7 girls), aiming to investigate the cross-modal conflict effect at the perception and response levels of children with ADHD. The results showed that both groups of children showed significant cross-modal conflict, and there was no significant difference between the ADHD and TD groups in the number of error trials and mean response time. However, the cross-modal conflict effect caused by auditory distractors was different between the ADHD and TD groups; the TD group had stronger auditory conflict at the response level, whereas the ADHD group had weaker auditory conflict. This indicates that the ADHD group had a deficit of auditory conflict at the response level.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Percepção Auditiva , Conflito Psicológico , Humanos , Masculino , Feminino , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Criança , Tempo de Reação , Percepção Visual/fisiologia , Atenção , Estimulação Luminosa
11.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570133

RESUMO

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


Assuntos
Células 3T3-L1 , Adipócitos , Fibronectinas , Lipólise , Liraglutida , Proteína Desacopladora 1 , Animais , Fibronectinas/metabolismo , Fibronectinas/genética , Camundongos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Liraglutida/farmacologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos
12.
Am J Ophthalmol ; 263: 141-151, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458409

RESUMO

PURPOSE: This study aims to appraise the therapeutic effectiveness of intravitreal injections anti-vascular endothelial growth factor (anti-VEGF) vs alternative therapies in managing radiation retinopathy (RR). DESIGN: Systematic review and meta-analysis. METHODS: We obtained comprehensive data retrieval using PubMed, Embase, Web of Science, Scopus, and the Cochrane Library from their inception until December 15, 2023. This review included randomized controlled trials (RCTs) and nonrandomized studies (NRSs) reporting on best-corrected visual acuity (BCVA) among RR patients treated with intravitreal anti-VEGF. Study selection and data extraction were meticulously performed by 2 independent reviewers. The Cochrane Risk of Bias Tool 2.0 (RoB 2.0) and Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) scales were utilized for bias risk assessment. Quantification of heterogeneity was executed using Q, H, and I2 statistics. The primary endpoint was the BCVA at the final observation point of each study. Secondary endpoints included central retinal thickness (CRT), foveal avascular zone (FAZ) area, and capillary density (CD) at the level of superficial capillary plexus. Subgroup analyses were undertaken to explore potential heterogeneity sources possibly due to treatment duration and study design. Sensitivity analyses were conducted to ascertain result stability. RESULTS: This analysis incorporated 7 studies (including 3 RCTs) encompassing 922 patients afflicted with RR. Relative to other treatment modalities, intravitreal anti-VEGF therapy was associated with a statistically significant mean decrease in BCVA of -0.34 logMAR (95% CI, -0.39 to -0.30 logMAR; I2 = 87.70%; P < .001), and a substantial reduction in CRT of -34.65 µm (95% CI, -50.70 to -18.60 µm; I2 = 30.40%; P < .001). Additionally, a reduction in the FAZ area by -0.69 mm² (95% CI, -0.91 to -0.46 mm², I2 = 0%; P < .001) was observed. A positive tendency was noted in CD at the superficial capillary plexus between anti-VEGF and other therapeutic interventions. CONCLUSIONS: Intravitreal anti-VEGF injections, in comparison to other treatments, demonstrate superior efficacy in enhancing BCVA and reducing CRT, thereby underscoring the potential of anti-VEGF in ameliorating radiation retinopathy outcomes. However, the conclusions are constrained by the incorporation of data from some NRSs and the small sample sizes.

13.
Opt Express ; 32(4): 6507-6519, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439351

RESUMO

With the increasing demand for communication capacity, all-optical regeneration of multimode signals is a helpful technology of network nodes and optical signal processors. However, the difficulty of regenerating signal in higher-order modes hinders the practical application of multimode all-optical regenerators. In this study, we experimentally demonstrate the 40 Gb/s all-optical regeneration of NRZ-OOK signal in TE0 and TE1 modes via four-wave mixing (FWM) in the low-loss silicon-based nanowaveguide. By optimizing the parameters of waveguide section to enhance FWM conversion efficiency of two modes, and introducing Euler bending to reduce crosstalk between modes, the transmission loss of the silicon waveguide is 0.3 dB/cm, and the FWM conversion efficiency of the multimode regenerator is as high as -9.6 dB (TE0) and -13.0 dB (TE1). Both modes achieve extinction ratio enhancement of about 6 dB after regeneration. This silicon-based all-optical regenerator has great application potential in all-optical signal processing systems.

14.
Acta Pharmacol Sin ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459256

RESUMO

Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 µM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 µM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.

15.
Small ; : e2312230, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516959

RESUMO

All inorganic CsPbI2Br perovskite (AIP) has attracted great attention due to its excellent resistance against thermal stress as well as the remarkable capability to deliver high-voltage output. However, CsPbI2Br perovskite solar cells (PeSCs) still encounter critical challenges in attaining both high efficiency and mechanical stability for commercial applications. In this work, formamidine disulfide dihydrochloride (FADD) modified ZnO electron transport layer (ETL) has been developed for fabricating inverted devices on either rigid or flexible substrate. It is found that the FADD modification leads to efficient defects passivation, thereby significantly reducing charge recombination at the AIP/ETL interface. As a result, rigid PeSCs (r-PeSCs) deliver an enhanced efficiency of 16.05% and improved long-term thermal stability. Moreover, the introduced FADD can regulate the Young's modulus (or Derjaguin-Muller-Toporov (DMT) modilus) of ZnO ETL and dissipate stress concentration at the AIP/ETL interface, effectively restraining the crack generation and improving the mechanical stability of PeSCs. The flexible PeSCs (f-PeSCs) exhibit one of the best performances so far reported with excellent stability against 6000 bending cycles at a curvature radius of 5 mm. This work thus provides an effective strategy to simultaneously improve the photovoltaic performance and mechanical stability.

16.
Invest New Drugs ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483782

RESUMO

MEK inhibitors have immunomodulatory activity and potential for synergistic activity when combined with PD-1 inhibitors. We evaluated selumetinib (inhibitor of MEK1/2) plus pembrolizumab (anti‒PD-1 antibody) in patients with advanced/metastatic solid tumors. In this phase 1b study, adults with previously treated advanced/metastatic solid tumors received pembrolizumab 200 mg intravenously every 3 weeks plus selumetinib on days 1‒14 per 3-week cycle (2 weeks on/1 week off); selumetinib dosing began at 50 mg orally twice daily with escalation in 25 mg increments for ≤ 35 cycles. Primary endpoints were dose-limiting toxicities (DLTs), adverse events (AEs), and treatment discontinuations due to AEs. Thirty-two patients were enrolled. Dose escalation was completed up to selumetinib 125 mg twice daily. The target DLT rate of 30% was not reached at any dose level. In the selumetinib 100 mg group, 2/11 patients (18.2%) experienced DLTs (n = 1 grade 3 diarrhea, n = 1 grade 3 fatigue). In the selumetinib 125 mg group, 3/14 (21.4%) experienced DLTs (n = 1 grade 2 retinal detachment, n = 1 grade 3 retinopathy, n = 1 grade 3 stomatitis). Dose-related changes in pharmacokinetic exposures were observed for selumetinib and N-desmethyl selumetinib up to 100 mg (saturation at 125 mg). Two patients achieved partial responses (1 each with selumetinib 75 mg and 125 mg) for an objective response rate of 6%. The study was stopped early because of insufficient efficacy. Although the target DLT rate was not reached at any dose level and no new safety signals were identified, selumetinib plus pembrolizumab had limited antitumor activity in this population. Trial registration: ClinicalTrials.gov , NCT03833427.

17.
Front Med (Lausanne) ; 11: 1339573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487022

RESUMO

Bone defects resulting from severe trauma, tumors, inflammation, and other factors are increasingly prevalent. Stem cell-based therapies have emerged as a promising alternative. Dental pulp stem cells (DPSCs), sourced from dental pulp, have garnered significant attention owing to their ready accessibility and minimal collection-associated risks. Ongoing investigations into DPSCs have revealed their potential to undergo osteogenic differentiation and their capacity to secrete a diverse array of ontogenetic components, such as extracellular vesicles and cell lysates. This comprehensive review article aims to provide an in-depth analysis of DPSCs and their secretory components, emphasizing extraction techniques and utilization while elucidating the intricate mechanisms governing bone regeneration. Furthermore, we explore the merits and demerits of cell and cell-free therapeutic modalities, as well as discuss the potential prospects, opportunities, and inherent challenges associated with DPSC therapy and cell-free therapies in the context of bone regeneration.

18.
Opt Lett ; 49(5): 1129-1132, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426955

RESUMO

Auxiliary laser heating has become a widely adopted method for Kerr soliton frequency comb generation in optical microcavities, thanks to its reliable and easy-to-achieve merits for solving the thermal instability during the formation of dissipative Kerr solitons. Here, we conduct optimization of auxiliary laser heating by leveraging the distinct loss and absorption characteristics of different longitudinal and polarization cavity modes. We show that even if the auxiliary and pump lasers enter orthogonal polarization modes, their mutual photothermal balance can be efficient enough to maintain a cavity thermal equilibrium as the pump laser enters the red-detuning soliton regime, and by choosing the most suitable resonance for the auxiliary and pump lasers, the auxiliary laser power can be reduced to 20% of the pump laser and still be capable of warranting soliton generation. Moreover, we demonstrate soliton comb generation using integrated laser modules with a few milliwatt on-chip pump and auxiliary powers, showcasing the potential for further chip integration of the auxiliary laser heating method.

19.
Environ Pollut ; 348: 123876, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552773

RESUMO

Global environmental deterioration poses a major risk to ecological security and human health, and emerging technologies are urgently needed to deal with it. Therefore, the exploitation of photocatalysts with favorable activity for efficient degradation of pesticide contaminants is one of the strategies to achieve environmental remediation. Herein, oxygen vacancy-rich Bi2WO6 (Ov-BWO) was prepared through a solvothermal method utilizing ethylene glycol (EG), which exhibited excellent photocatalytic efficiency in photodegradation of glyphosate. The formation of oxygen vacancies (Ovs) in Ov-BWO was demonstrated utilizing XPS and EPR. PL, TRPL, photocurrent tests, and EIS analyses revealed that Ovs accelerated effective transfer of photogenerated charge, extended lifetime of charge carriers, promoted production of active species and significantly improved the photocatalytic performance. Compared with the low-activity Bi2WO6 (BWO, 59.6%), Ov-BWO showed outstanding photocatalytic activity, achieving a degradation efficiency of 91% for glyphosate at 120 min of visible light irradiation. Moreover, Ov-BWO also displayed outstanding recyclable stability after four repeated uses. Based on the characterization of photoelectric properties, a feasible photocatalytic reaction was put forth, along with glyphosate degradation pathways. Furthermore, the degradation intermediates of glyphosate were analyzed in detail employing HPLC-MS. The toxicity assessment indicated that degraded products had been proven to be non-toxic to the ecological system. This work presents the potential of photocatalysts with Ovs for the photodegradation of pesticides, providing a viable strategy for environmental renovation.


Assuntos
Glifosato , Praguicidas , Humanos , Fotólise , Luz , Oxigênio
20.
Adv Mater ; : e2401493, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422537

RESUMO

The development of bright and long-lived aqueous room-temperature phosphorescent (RTP) materials holds paramount importance in broadening the application scope of RTP material system. However, the conventional RTP materials usually exhibit low efficiency and short lifetime in aqueous solution. Herein, an in situ host-guest strategy is proposed to achieve cyanuric acid (CA)-derived phosphorescent carbon nitrogen dots (CNDs) composite (CNDs@CA) that demonstrates a significant enhancement of both quantum yield (QY) and lifetime mediated by water. Detailed investigations reveal that the robust hydrogen bonding networks between CNDs@CA and water effectively stabilize triplet excitons and suppress nonradiative decays, as well as facilitate efficient energy transfer from CA to CNDs, thereby prolonging the lifetime and enhancing the efficiency of RTP. The phosphorescent QY and lifetime of CNDs@CA can be increased to 26.89% (3.9-fold increase) and 951.25 ms (5.5-fold increase), respectively, with the incorporation of 50 wt% water under ambient conditions. Even in fully aqueous environments (with up to 400 wt% water added), CNDs@CA exhibits persistent water-boosted RTP properties, demonstrating exceptional stability. The robust water-boosted RTP property of CNDs@CA in aqueous solutions presents significant potential for high signal-to-noise ratio afterglow bioimaging as well as advanced information encryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...