Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(25): 17843-17854, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38836173

RESUMO

Adsorption is an effective approach for remediating ammonium pollution, and zeolite has exceptional efficacy for the adsorption of ammonium. The investigation of ammonium adsorption using coal-fly-ash-based zeolite has gained remarkable attention in contemporary research. In this work, a sodium-acetate-modified synthetic zeolite (MSZ) was used to absorb ammonium in simulated wastewater. The MSZ had an adsorption capacity for ammonium of 27.46 mg g-1, and the adsorption process followed the Langmuir isotherm model and pseudo-second-order kinetics model. The adsorption and desorption of ammonium were controlled by ion exchange, pore diffusion, and electrostatic attraction processes. Ion exchange was responsible for 77.90% of the adsorption process and 80.16% of the desorption process. The MSZ was capable of continuously removing large amounts of ammonium from wastewater through fixed bed adsorption. After 5 regeneration cycles, MSZ still maintained 75% adsorption characteristics for ammonium. Using MSZ adsorbed with ammonium as a soil amendment increased the germination rate of mung beans by 10%. Furthermore, it also increased the stem length, root length, and fresh weight by 20-30%. These findings suggest that MSZ provides a promising application prospect to mitigate ammonium pollution and recycle ammonium resources.

2.
PLoS One ; 19(4): e0301986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626158

RESUMO

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Magnésio , Esgotos , Adsorção , Carvão Vegetal , Fósforo/química , Cinética , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 31(3): 4425-4438, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102434

RESUMO

Phosphate removal is complicated by the need for resource recovery. Biochar shows promise for efficient phosphate adsorption, but it must be modified to enhance its adsorption capacity. In this work, magnesium (Mg)-loaded biochar was synthesized through a two-step dipping and calcination process, and the MgBC600 product was used to adsorb phosphate from simulated water and biogas slurry wastewater. The phosphate adsorption capacity of Mg-loaded biochar was 109.35 mg/g, which was 12 times higher than that of unmodified biochar. The R2 of the Langmuir and pseudo-second-order kinetic models were 0.988 and 0.990, respectively, which fitted the phosphate adsorption process of MgBC600. Phosphate adsorption by MgBC600 was a spontaneous and endothermic process. The adsorption mechanism study showed that phosphate adsorption was controlled by the formation and electrostatic attraction of MgHPO4. In addition, 98% of chemically adsorbed phosphate was released after regeneration. Using phosphate-adsorbed MgBC600 as a soil amendment, Arabidopsis thaliana was 1.47 times higher than that in the biochar-only group, demonstrating that this is a promising strategy for enhancing phosphate adsorption efficiency and adsorbent recycling.


Assuntos
Fosfatos , Poluentes Químicos da Água , Magnésio , Adsorção , Carvão Vegetal , Cinética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA