Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 14(1): 16156, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997337

RESUMO

Dermatophagoides farina (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus) are the prevalent kinds of house dust mites (HDMs). HDMs are common inhalant allergens that cause a range of allergic diseases, such as rhinitis, atopic dermatitis, and asthma. The epidemiology of these diseases is associated with exposure to mites. Therefore, in the present study, a method named multiplex loop-mediated isothermal amplification (LAMP) was developed to detect environmental dust mites. The multiplex LAMP assay allows amplification within a single tube and has an ITS plasmid detection limit as low as 40 fg/µL for both single dust mites and mixed dust mites (D. pteronyssinus and D. farinae), which is up to ten times more sensitive than classical PCR techniques. Furthermore, the multiplex LAMP method was applied to samples of single dust mites and clinical dust to confirm its validity. The multiplex LAMP assay exhibited higher sensitivity, simpler instrumentation, and visualization of test results, indicating that this method could be used as an alternative to traditional techniques for the detection of HDMs.


Assuntos
Dermatophagoides farinae , Dermatophagoides pteronyssinus , Técnicas de Amplificação de Ácido Nucleico , Animais , Dermatophagoides pteronyssinus/genética , Dermatophagoides farinae/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade
2.
J Genet Genomics ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009303

RESUMO

Shandong province, located in the Lower Yellow River, is one of the birthplaces of ancient Chinese civilization. However, the comprehensive genetic histories of this region have remained largely unknown until now due to a lack of ancient human genomes. Here, we present 21 ancient genomes from Shandong dating from the Warring States period to the Jin-Yuan Dynasties. Unlike the early Neolithic samples from Shandong, the historical samples are most closely related to post-Late Neolithic populations of the Middle Yellow River Basin, suggesting a population turnover in Shandong from the Neolithic Age to the Historical era. In addition, we detect a close genetic affinity between the historical samples in Shandong and present-day Han Chinese, showing long-term genetic stability in Han Chinese at least since the Warring States period.

3.
Biochem Genet ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753026

RESUMO

The Stat (signal transducer and activator of transcription) gene family plays a vital role in regulating immunity and the processes of cellular proliferation, differentiation, and apoptosis across diverse organisms. Although the functions of Stat genes in immunity have been extensively documented in many mammals, limited data are available for reptiles. We used phylogenetic analysis to identify eight putative members of the Stat family (Stat1-1, Stat1-2, Stat2, Stat3, Stat4, Stat5b, Stat6-1, and Stat6-2) within the genome of M. reevesii, a freshwater turtle found in East Asia. Sequence analysis showed that the Stat genes contain four conserved structural domains protein interaction domain, coiled-coil domain, DNA-binding domain, and Src homology domain 2. In addition, Stat1, Stat2, and Stat6 contain TAZ2bind, Apolipo_F, and TALPID3 structural domains. The mRNA levels of Stat genes were upregulated in spleen tissues at 4, 8, 12, and 16 h after administration of lipopolysaccharide, a potent activator of the immune system. Stat5b expression at 12-h LPS post-injection exhibited the most substantial difference from the control. The expression of Stat5b in spleen tissue cellular was verified by immunofluorescence. These results suggest that Stat5b plays a role in the immune response of M. reevesii and may prove to be as a positive marker of an immune response in future studies.

4.
J Immunol ; 213(2): 125-134, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38787155

RESUMO

Atopic dermatitis results in diminished barrier function and altered production of antimicrobial peptides. Dendritic epidermal T cells (DETCs) play an important role in the wound repair and inflammation process. Our previous work identified an IL-4-dependent loss of DETCs in Stat6VT mice and in the MC903-induced skin inflammation mouse model. However, the mechanisms through which IL-4 mediates the loss of DETCs are unclear. In this study, we show that IL-4Rα germline knockout mice (Il4ra-/-) have increased DETCs, faster wound healing, and increased epidermal differentiation complex gene and fibronectin expression. The absence of IL-4Rα minimized the MC903-induced loss of DETCs, and reciprocal bone marrow chimera experiments in Il4ra-/- and wild-type mice demonstrated structural nonhematopoietic IL-4-responsive cell-mediated DETC homeostasis. Skin keratinocyte-derived IL-15 decreased dramatically in the MC903 model, while injection of IL-15 rescued DETC loss by promoting DETC proliferation and limiting apoptosis. Conditional deletion of IL-4Rα from keratinocytes using Il4rafl/fl K14-Cre mice showed an increase of DETCs, increased IL-15 production, and diminished skin inflammation following wounding. These results suggest that IL-4-dependent effects on DETCs in allergic skin inflammation are mediated by the IL-4Rα receptor of keratinocytes.


Assuntos
Interleucina-4 , Queratinócitos , Camundongos Knockout , Transdução de Sinais , Animais , Camundongos , Queratinócitos/imunologia , Interleucina-4/imunologia , Transdução de Sinais/imunologia , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Pele/imunologia , Pele/patologia , Receptores de Superfície Celular
5.
Vet Microbiol ; 291: 109911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367539

RESUMO

Rho guanine nucleotide exchange factor 18 (ARHGEF18) is a member of the Rho guanine nucleotide exchange factor (RhoGEF) family. RhoGEF plays an important role in the occurrence of tumors and neurological diseases; however, its involvement in host cell resistance against pathogenic microorganisms is mostly unknown. Herein, we report that bovine viral diarrhea virus (BVDV) nonstructural protein 5B (NS5B) can activate the nuclear factor kappa B (NF-κB) signaling pathway to induce an immune response. To clarify the functional domains of NS5B that activate NF-κB signaling, the six structural domains of NS5B were expressed separately: NS5B-core, NS5B-finger, NS5B-palm, NS5B-thumb, NS5B-N and NS5B-c domain. We preliminarily determined that the functional domains of NS5B that activate NF-κB signaling are the finger and palm domains. We used a bovine kidney cell cDNA library and yeast two-hybrid technology to identify that the host protein ARHGEF18 interacts with NS5B. Co-immunoprecipitation assays showed that ARHGEF18 interacts strongly with NS5B-palm. Interestingly ARHGEF18 could promote NF-κB signaling activation by BVDV NS5B. In addition silencing ARHGEF18 significantly inhibited NS5B-palm activation of NF-κB signaling. We concluded that ARHGEF18 can bind to BVDV NS5B through the palm domain to activate the NF-κB pathway. These findings provide direct evidence that BVDV NS5B induces immune responses by activating NF-κB signaling.


Assuntos
Vírus da Diarreia Viral Bovina , NF-kappa B , Fatores de Troca de Nucleotídeo Guanina Rho , Proteínas não Estruturais Virais , Animais , Linhagem Celular , Vírus da Diarreia Viral Bovina/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Bovinos
6.
J Agric Food Chem ; 72(6): 3231-3243, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38303105

RESUMO

The color of the seed coat has great diversity and is regarded as a biomarker of metabolic variations. Here we isolated a soybean variant (BLK) from a population of recombinant inbred lines with a black seed coat, while its sibling plants have yellow seed coats (YL). The BLK and YL plants showed no obvious differences in vegetative growth and seed weight. However, the BLK seeds had higher anthocyanins and flavonoids level and showed tolerance to various abiotic stresses including herbicide, oxidation, salt, and alkalinity during germination. Integrated metabolomic and transcriptomic analyses revealed that the upregulation of biosynthetic genes probably contributed to the overaccumulation of flavonoids in BLK seeds. The transient expression of those biosynthetic genes in soybean root hairs increased the levels of total flavonoids or anthocyanins. Our study revealed the molecular basis of flavonoid accumulation in soybean seeds, leveraging genetic engineering for both nutritious and stress-tolerant soybean germplasm.


Assuntos
Flavonoides , Glycine max , Flavonoides/metabolismo , Glycine max/genética , Antocianinas/metabolismo , Multiômica , Pigmentação , Sementes/genética , Sementes/metabolismo
7.
ACS Appl Mater Interfaces ; 15(40): 47764-47778, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773334

RESUMO

Sodium-ion batteries (SIBs) have shown great potential as energy storage devices due to their low price and abundant sodium content. Among them, O3-type layered oxides are a promising cathode material for sodium-ion batteries; however, most of them suffer from slow kinetics and unfavorable structural stability, which seriously hinder their practical application. O3-NaNi0.3Fe0.2Mn0.5O2 surface modification is performed by a simple wet chemical method of coating NaTi2(PO4)3 on the surface. The NASICON-type NaTi2(PO4)3 coating layer has a special three-dimensional channel, which facilitates the rapid migration of Na+, and the NaTi2(PO4)3 coating layer also prevents direct contact between the electrode and the electrolyte, ensuring the stability of the interface. In addition, the NaTi2(PO4)3 coating layer induces part of the Ti4+ doping into the transition metal layer of NaNi0.3Fe0.2Mn0.5O2, which increases the stability of the transition metal layer and reduces the resistance of Na+ diffusion. More importantly, the NaTi2(PO4)3 coating layer can suppress the O3-P3 phase transition and reduce the volume change of the materials throughout the charge/discharge process. Thus, the NaTi2(PO4)3 coating layer can effectively improve the electrochemical performance of the cathode materials. The NFM@NTP3 has a capacity retention of 86% (2.0-4.0 V vs Na+/Na, 300 cycles) and 85% (2.0-4.2 V vs Na+/Na, 100 cycles) at 1C and a discharge capacity of 107 mAh g-1 (2.0-4.0 V vs Na+/Na) and 125 mAh g-1 (2.0-4.2 V vs Na+/Na) at 10C, respectively. Therefore, this surface modification strategy provides a simple and effective way to design and develop high-performance layered oxide cathode materials for sodium-ion batteries.

8.
Clin Transl Med ; 13(9): e1369, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37649137

RESUMO

BACKGROUND: The imbalance between osteoblasts and osteoclasts may lead to osteoporosis. Osteoblasts and osteoclasts have different energy requirements, with aerobic glycolysis being the prominent metabolic feature of osteoblasts, while osteoclast differentiation and fusion are driven by oxidative phosphorylation. METHODS: By polymerase chain reaction as well as Western blotting, we assayed coactivator-associated arginine methyltransferase 1 (CARM1) expression in bone tissue, the mouse precranial osteoblast cell line MC3T3-E1 and the mouse monocyte macrophage leukaemia cell line RAW264.7, and expression of related genes during osteogenic differentiation and osteoclast differentiation. Using gene overexpression (lentivirus) and loss-of-function approach (CRISPR/Cas9-mediated knockout) in vitro, we examined whether CARM1 regulates osteogenic differentiation and osteoblast differentiation by metabolic regulation. Transcriptomic assays and metabolomic assays were used to find the mechanism of action of CARM1. Furthermore, in vitro methylation assays were applied to clarify the arginine methylation site of PPP1CA by CARM1. RESULTS: We discovered that CARM1 reprogrammed glucose metabolism in osteoblasts and osteoclasts from oxidative phosphorylation to aerobic glycolysis, thereby promoting osteogenic differentiation and inhibiting osteoclastic differentiation. In vivo experiments revealed that CARM1 significantly decreased bone loss in osteoporosis model mice. Mechanistically, CARM1 methylated R23 of PPP1CA, affected the dephosphorylation of AKT-T450 and AMPK-T172, and increased the activities of phosphofructokinase-1 and pructose-2,6-biphosphatase3, causing an up-regulation of glycolytic flux. At the same time, as a transcriptional coactivator, CARM1 regulated the expression of pyruvate dehydrogenase kinase 3, which resulted in the inhibition of pyruvate dehydrogenase activity and inhibition of the tricarboxylic acid cycle, leading to a subsequent decrease in the flux of oxidative phosphorylation. CONCLUSIONS: These findings reveal for the first time the mechanism by which CARM1 affects both osteogenesis and osteoclast differentiation through metabolic regulation, which may represent a new feasible treatment strategy for osteoporosis.


Assuntos
Arginina , Osteogênese , Animais , Camundongos , Osteogênese/genética , Metilação , Diferenciação Celular/genética , Arginina/genética , Glucose
9.
Front Public Health ; 11: 1177965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213628

RESUMO

Objectives: As global efforts continue toward the target of eliminating viral hepatitis by 2030, the emergence of acute hepatitis of unspecified aetiology (HUA) remains a concern. This study assesses the overall trends and changes in spatiotemporal patterns in HUA in China from 2004 to 2021. Methods: We extracted the incidence and mortality rates of HUA from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2021. We used R software, ArcGIS, Moran's statistical analysis, and joinpoint regression to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the HUA across China. Results: From 2004 to 2021, a total of 707,559 cases of HUA have been diagnosed, including 636 deaths. The proportion of HUA in viral hepatitis gradually decreased from 7.55% in 2004 to 0.72% in 2021. The annual incidence of HUA decreased sharply from 6.6957 per 100,000 population in 2004 to 0.6302 per 100,000 population in 2021, with an average annual percentage change (APC) reduction of -13.1% (p < 0.001). The same result was seen in the mortality (APC, -22.14%, from 0.0089/100,000 in 2004 to 0.0002/100,000 in 2021, p < 0.001). All Chinese provinces saw a decline in incidence and mortality. Longitudinal analysis identified the age distribution in the incidence and mortality of HUA did not change and was highest in persons aged 15-59 years, accounting for 70% of all reported cases. During the COVID-19 pandemic, no significant increase was seen in pediatric HUA cases in China. Conclusion: China is experiencing an unprecedented decline in HUA, with the lowest incidence and mortality for 18 years. However, it is still important to sensitively monitor the overall trends of HUA and further improve HUA public health policy and practice in China.


Assuntos
COVID-19 , Doenças Transmissíveis , Hepatite Viral Humana , Criança , Humanos , Pandemias , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , China/epidemiologia , Hepatite Viral Humana/epidemiologia
10.
Biol Trace Elem Res ; 201(2): 843-855, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35314965

RESUMO

Glucocorticoid-induced osteoporosis (GIOP) has been the most common form of secondary osteoporosis. Glucocorticoids (GCs) can induce osteocyte and osteoblast apoptosis. Plenty of research has verified that silicon intake would positively affect bone. However, the effects of silicon on GIOP are not investigated. In this study, we assessed the impact of ortho-silicic acid (OSA) on Dex-induced apoptosis of osteocytes by cell apoptosis assays. The apoptosis-related genes, cleaved-caspase-3, Bcl-2, and Bax, were detected by western blotting. Then, we evaluated the possible role of OSA on osteogenesis and osteoclastogenesis with Dex using Alizarin red staining and tartrate-resistant acid phosphatase (TRAP) staining. We also detected the related genes by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting. We then established the GIOP mouse model to evaluate the potential role of OSA in vivo. We found that OSA showed no cytotoxic on osteocytes below 50 µM and prevented MLO-Y4 from Dex-induced apoptosis. We also found that OSA promoted osteogenesis and inhibited osteoclastogenesis with Dex. OSA had a protective effect on GIOP mice via the Akt signal pathway in vivo. In the end, we verified the Akt/Bad signal pathway in vitro, which showed the same results. Our finding demonstrated that OSA could protect osteocytes from apoptosis induced by GCs both in vitro and in vivo. Also, it promoted osteogenesis and inhibited osteoclastogenesis with the exitance of Dex. In conclusion, OSA has the potential value as a therapeutic agent for GIOP.


Assuntos
Osteoporose , Animais , Camundongos , Dexametasona/farmacologia , Glucocorticoides/efeitos adversos , Osteoblastos , Osteogênese , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ácido Silícico/farmacologia , Silício/farmacologia
11.
Autophagy ; 19(5): 1562-1581, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36300783

RESUMO

Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.


Assuntos
Proteínas Imediatamente Precoces , Macroautofagia , Animais , Camundongos , Autofagia/fisiologia , Proteína com Valosina/metabolismo , Fibroblastos/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Lisossomos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Imediatamente Precoces/metabolismo
12.
Front Bioeng Biotechnol ; 11: 1337709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188487

RESUMO

Traditional titanium alloy implant surfaces are inherently smooth and often lack effective osteoinductive properties. To overcome these limitations, coating technologies are frequently employed to enhance the efficiency of bone integration at the implant-host bone interface. Hierarchical zeolites, characterized by their chemical stability, can be applied to 3D-printed porous titanium alloy (pTi) surfaces as coating. The resulting novel implants with a "microporous-mesoporous-macroporous" spatial gradient structure can influence the behavior of adjacent cells; thereby, promoting the integration of bone at the implant interface. Consequently, a thorough exploration of various preparation methods is warranted for hierarchical zeolite coatings with respect to biocompatibility, coating stability, and osteogenesis. In this study, we employed three methods: in situ crystal growth, secondary growth, and layer-by-layer assembly, to construct hierarchical zeolite coatings on pTi, resulting in the development of a gradient structure. The findings of this investigation unequivocally demonstrated that the LBL-coating method consistently produced coatings characterized by superior uniformity, heightened surface roughness, and increased hydrophilicity, as well as increased biomechanical properties. These advantages considerably amplified cell adhesion, spreading, osteogenic differentiation, and mineralization of MC3T3-E1 cells, presenting superior biological functionality when compared to alternative coating methods. The outcomes of this research provide a solid theoretical basis for the clinical translation of hierarchical zeolite coatings in surface modifications for orthopedic implants.

13.
J Dev Biol ; 10(2)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35645295

RESUMO

Pax3 and Pax7 transcription factors are paralogs within the Pax gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by Pax7 systemic deletion but systemic Pax3 deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and in utero lethality by E14. However, we previously demonstrated that Pax3 hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null Pax3 allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog Pax7. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted Pax7 both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one Pax7 allele resulted in partial outflow tract defects, and complete loss of Pax7 resulted in full penetrance outflow tract defects and in utero lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. Pax7Cre lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% Pax3 hypomorphs. Finally, genetic cell ablation of Pax7Cre-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.

14.
Sci Immunol ; 7(69): eabg9296, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302861

RESUMO

Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.


Assuntos
Asma , Hipersensibilidade , Alérgenos , Linfócitos T CD4-Positivos , Citocinas , Humanos , Inflamação , Interleucina-9
15.
Arthritis Res Ther ; 24(1): 8, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980239

RESUMO

BACKGROUND: Hip osteoarthritis is a common disabling condition of the hip joint and is associated with a substantial health burden. We assessed the epidemiological patterns of hip osteoarthritis from 1990 to 2019 by sex, age, and socio-demographic index (SDI). METHODS: Age-standardized rates (ASRs) were obtained for the incidence and disability-adjusted life years (DALYs) of hip osteoarthritis from 1990 to 2019 for 21 regions, encompassing a total of 204 countries and territories. The estimated annual percentage changes (EAPCs) of ASRs were calculated to evaluate the trends in the incidence and DALYs of hip osteoarthritis over these 30 years. RESULTS: Globally, from 1990 to 2019, the age-standardized incidence rate (ASIR) of hip osteoarthritis increased from 17.02 per 100,000 persons to 18.70 per 100,000 persons, with an upward trend in the EAPC of 0.32 (0.29-0.34), whereas the age-standardized DALY rate increased from 11.54 per 100,000 persons to 12.57 per 100,000 persons, with an EAPC of 0.29 (0.27-0.32). In 2019, the EAPCs of the ASIR and age-standardized DALY rate of hip osteoarthritis were positively associated with the SDI of hip osteoarthritis. In 1990 and 2019, the incidence of hip osteoarthritis was unimodally distributed across different age groups, with a peak incidence in the 60-64-year-old age group, whereas the DALYs increased with age. CONCLUSIONS: The incidence and DALYs of hip osteoarthritis have been increasing globally. The EAPCs of the ASIR and age-standardized DALY rate were particularly significant in developed regions and varied across nations and regions, indicating the urgent need for governments and medical institutions to increase the awareness regarding risk factors, consequences of hip osteoarthritis.


Assuntos
Carga Global da Doença , Osteoartrite do Quadril , Saúde Global , Humanos , Incidência , Pessoa de Meia-Idade , Osteoartrite do Quadril/diagnóstico , Osteoartrite do Quadril/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida
16.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445339

RESUMO

Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.


Assuntos
Dermatite/genética , Epiderme/metabolismo , PPAR gama/fisiologia , Fenômenos Fisiológicos da Pele/genética , Animais , Células Cultivadas , Dermatite/metabolismo , Dermatite/patologia , Dermatite/fisiopatologia , Epiderme/fisiologia , Homeostase/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , PPAR gama/genética , PPAR gama/metabolismo
17.
Life Sci ; 264: 118680, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130075

RESUMO

AIMS: Osteoporosis is considered a common skeletal disease. Ortho-silicic acid has been found to enhance the osteogenic differentiation of osteoblasts. However, the molecular mechanism of osteogenesis induced by ortho-silicic acid is still undefined totally. MicroRNAs (miRs) play a key role in osteogenesis of osteoblasts. This study investigated the role of miR-130b in promoting osteogenesis induced by ortho-silicic acid. MAIN METHODS AND KEY FINDINGS: In this study, we found ortho-silicic acid enhanced osteogenesis of osteoblasts in vitro and promoted preventing and treating osteoporosis in vivo. Furthermore, the expression of miR-130b increased under application of ortho-silicic acid. In vitro, experiments demonstrated miR-130b overexpression or inhibition significantly promoted or suppressed osteogenic differentiation of osteoblasts under application of ortho-silicic acid, respectively. Consistently, downregulation of miR-130b in ovariectomy (OVX) rats dropped off the beneficial effect of ortho-silicic acid against bone loss. Mechanistically, we identified phosphatase and tensin homologue deleted on human chromosome 10 (PTEN) as the direct target of miR-130b during osteogenesis induced by ortho-silicic acid. SIGNIFICANCE: In conclusion, our findings reveal that ortho-silicic acid promotes the osteogenesis of osteoblasts mediated by the miR-130b/PTEN signaling axis, which identifies a new target to prevent and treat osteoporosis.


Assuntos
MicroRNAs/biossíntese , Osteoblastos/metabolismo , Osteogênese/fisiologia , Osteoporose/metabolismo , PTEN Fosfo-Hidrolase/biossíntese , Ácido Silícico/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Ratos , Ratos Wistar , Ácido Silícico/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Microtomografia por Raio-X/métodos
19.
Biol Trace Elem Res ; 199(5): 1864-1876, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32676940

RESUMO

Numerous experiments in vitro and in vivo have shown that an appropriate increase intake of silicon can facilitate the synthesis of collagen and its stabilization and promote the differentiation and mineralization of osteoblasts. In this study, we examined whether ortho-silicic acid restrains the differentiation of osteoclast through the receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK)/osteoprotegerin (OPG) signaling pathway by investigating its effect in vitro and in vivo. Bone marrow macrophage (BMM) cells were isolated and cultured with or without ortho-silicic acid, and then TRAP staining and immunofluorescence were performed to detect the differentiation of osteoclast. The RANKL-induced osteoclast marker gene and protein expression including c-Fos, nuclear factor of activated T cells cl (NFATcl), tumor necrosis factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B P50 (NF-κB P50), NF-κB P52, RANK, integrin ß3, cathepsin K (CTSK), DC-STAMP, and TRAP were quantitatively detected by western blot and RT-PCR. Ovariectomized (OVX) rats were injected with ortho-silicic acid (OVX+Si group) and normal saline (OVX group), and sham-operated rats were injected with normal saline (Sham group). And micro-CT, H&E, and TRAP staining, ELISA, and western blot were performed. Ortho-silicic acid could inhibit the differentiation of osteoclast, and the marker genes and proteins were decreased. The OVX-induced bone loss could be reversed by ortho-silicic acid. Our finding demonstrated that ortho-silicic acid suppresses RANKL-induced osteoclastogenesis and has potential value as a therapeutic agent for OVX-induced bone loss.


Assuntos
Reabsorção Óssea , Ligante RANK , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Feminino , Humanos , NF-kappa B , Osteogênese , Ovariectomia , Ratos , Ácido Silícico
20.
Drug Des Devel Ther ; 14: 4451-4463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122889

RESUMO

PURPOSE: Glucocorticoids are used for the treatment of inflammatory diseases, but glucocorticoid treatment is associated with bone damage. Resveratrol is a phytoalexin found in many plants, and we investigated its protective role on dexamethasone-induced dysfunction in MC3T3-E1 cells and primary osteoblasts. MATERIALS AND METHODS: MC3T3-E1 cells and primary osteoblasts were treated with dexamethasone in the presence/absence of different doses of resveratrol for 24 or 48 h. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to evaluate cell viability. Apoptosis was analyzed by a flow cytometry. An alkaline phosphatase (ALP) activity assay and Alizarin Red S staining were used to study osteoblast differentiation. Expression of osteoblast-related genes was measured by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The AMP-activated protein kinase (AMPK) signaling pathway and mitochondrial expression of superoxide dismutase were evaluated by Western blotting. Intracellular reactive oxygen species (ROS), adenosine triphosphate (ATP) content, mitochondrial-complex activity, and mitochondrial DNA content were measured to evaluate mitochondrial function. RESULTS: Resveratrol induced the proliferation and inhibited apoptosis of osteoblasts in the presence of dexamethasone. Resveratrol increased the ALP activity and mineralization of osteoblasts. Resveratrol also attenuated dexamethasone-induced inhibition of mRNA expression of osteogenesis maker genes, including bone morphogenetic protein-2, osteoprotegerin, runt-related transcription factor-2, and bone Gla protein. Resveratrol alleviated dexamethasone-induced mitochondrial dysfunction. Resveratrol strongly stimulated expression of peroxisome proliferator-activated receptor-γ coactivator 1α and sirtuin-3 genes, as well as their downstream target gene superoxide dismutase-2. Resveratrol induced phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). Blockade of AMPK signaling using compound C reversed the protective effects of resveratrol against dexamethasone. CONCLUSION: Resveratrol showed protective effects against dexamethasone-induced dysfunction of osteoblasts by activating AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dexametasona/antagonistas & inibidores , Osteoblastos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Resveratrol/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...