Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 79: 38-48, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392985

RESUMO

Microbial overproduction of aromatic chemicals has gained considerable industrial interest and various metabolic engineering approaches have been employed in recent years to address the associated challenges. So far, most studies have used sugars (mostly glucose) or glycerol as the primary carbon source. In this study, we used ethylene glycol (EG) as the main carbon substrate. EG could be obtained from the degradation of plastic and cellulosic wastes. As a proof of concept, Escherichia coli was engineered to transform EG into L-tyrosine, a valuable aromatic amino acid. Under the best fermentation condition, the strain produced 2 g/L L-tyrosine from 10 g/L EG, outperforming glucose (the most common sugar feedstock) in the same experimental conditions. To prove the concept that EG can be converted into different aromatic chemicals, E. coli was further engineered with a similar approach to synthesize other valuable aromatic chemicals, L-phenylalanine and p-coumaric acid. Finally, waste polyethylene terephthalate (PET) bottles were degraded using acid hydrolysis and the resulting monomer EG was transformed into L-tyrosine using the engineered E. coli, yielding a comparable titer to that obtained using commercial EG. The strains developed in this study should be valuable to the community for producing valuable aromatics from EG.


Assuntos
Escherichia coli , Etilenoglicol , Escherichia coli/genética , Escherichia coli/metabolismo , Etilenoglicol/metabolismo , Engenharia Metabólica/métodos , Glucose/metabolismo , Tirosina/genética , Tirosina/metabolismo , Carbono/metabolismo , Fermentação
2.
Biomaterials ; 287: 121661, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35842981

RESUMO

Agricultural biomass remains as one of the commonly found waste on Earth. Although valorisation of these wastes has been studied in detail, the fermentation-based processes still need improvement due to the high cost of hydrolysing enzymes, and the presence of growth inhibitors which constrains the fermentation to produce high-value products. To address these challenges, we developed an integrated process in this study combining abiotic- and bio-catalysis to produce l-tyrosine from corn husk. The first step involved a one-pot hydrolytic hydrogenation tandem reaction without the use of the expensive enzymes, which yielded a mixture of polyols and sugars. Without any purification, these crude hydrolysates can be almost completely utilized by an engineered Escherichia coli strain, which did not exhibit any growth inhibition. The strain produced 0.44 g/L l-tyrosine from 10 g/L crude corn husk hydrolysates, demonstrating the feasibility of converting agricultural biomass into a valuable aromatic amino acid via an integrated process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...