Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cells ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38994948

RESUMO

Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS: We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS: We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION: Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.


Assuntos
Astrócitos , Transtorno Autístico , Encéfalo , Metilação de DNA , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Neurônios , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno Autístico/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Metilação de DNA/genética , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Feminino , Regiões Promotoras Genéticas/genética , Forma Celular , Criança , Regulação da Expressão Gênica , Proteína Reelina
2.
Curr Med Imaging ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676487

RESUMO

Background: Cardiac chamber dimensions and left ventricle (LV) wall thickness change with the cardiac cycle, in which researchers have set different time points for systole and diastole. OBJECTIVE: This study aimed to provide characteristics of normal heart and choose the correct cardiac cycle to measure maximum cardiac parameters for cardiovascular disease. METHODS: The parameters of left atrium (LA), LV, right atrium (RA), and right ventricle (RV), as well as the wall thickness of LV, were measured in different cardiac phases using cardiac computed tomography (CT). Then, their differences in different phases and the correlation between these parameters and traditional risk factors were analyzed. In addition, receiver operator characteristic curve (ROC) analyses was performed to estimate LA enlargement. RESULTS: The dimensions of LA and RA as well as the wall thickness of LV reached the maximum at the phase of 35% - 45%, while the dimensions of LV and RV reached the maximum at 95% - 5%. However, the changes of LA-B (antero-posterior diameter), LV-D1 (basal dimension), RA-B (minor dimension), and RV-D2 (mid cavity dimension) were relatively more stable than other diameters during the cardiac cycle. The maximum LA-B diameter, LV-D1 diameter, RA-B diameter, and RV-D2 diameter as well as the maximum interventricular septum thickness were acquired. Heart rate (HR) and smoking were potential indicators of LV-D2 (mid cavity dimension), while HR and LV myocardial mass were potential indicators of LV-D3 (apical-basal dimension). In phase 45%, the cut-off value of LA-B was 37.12 mm, with high sensitivity for predicting LA enlargement. CONCLUSION: Choosing the adaptive cardiac phase for evaluating cardiac chamber dimensions and wall thickness obtained by cardiac CT could provide a more accurate clinical measurement of the heart.

.

3.
Epigenomics ; 16(1): 57-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088063

RESUMO

The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.


Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common age-related brain diseases. The incidence of AD is almost 20% in individuals over the age of 80 years, and the incidence of PD is 1­4% in individuals over the age of 60 years. Research scientists are studying various links among key factors involved in AD and PD pathogenesis, including diet, gut microbiota (communal bacteria living in our gut), neuroinflammation, epigenetic modifications (regulation of gene expression that is affected by environmental factors) and genetic changes to obtain greater insights into the mechanisms of disease development to design better therapeutics for these disabling diseases. The discovery of these relationships will provide opportunities to maintain favorable health via diet­microbiota­epigenetic modifications, since diet and surrounding environments play crucial roles in gut microbial alterations. Here, we discuss the interactions between destructive protein misfolding/aggregation in AD and PD, with neuroinflammation and epigenetic alterations that all are affected by nutrition, microbiota dysbiosis (imbalance), leaky gut (gut­blood barrier disruption) and internal or environmental toxins. We also present thought-provoking discussions and ideas about recent preventive/therapeutic approaches like special diets, probiotics, fecal microbiota transplantation and even specific antibiotics for preventing or improving neuropsychiatric symptoms in AD and PD.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Microbioma Gastrointestinal/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Epigenoma
4.
Genes (Basel) ; 14(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137038

RESUMO

Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Probióticos/uso terapêutico , Probióticos/farmacologia , Epigênese Genética
5.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571393

RESUMO

During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Humanos , Idoso , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Envelhecimento , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo
6.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446563

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a progressive urological disease occurring in middle-aged and elderly men, which can be characterized by the non-malignant overgrowth of stromal and epithelial cells in the transition zone of the prostate. Previous studies have demonstrated that lycopene can inhibit proliferation, while curcumin can strongly inhibit inflammation. This study aims to determine the inhibitory effect of the combination of lycopene and curcumin on BPH. METHOD: To induce BPH models in vitro and in vivo, the BPH-1 cell line and Sprague Dawley (SD) rats were used, respectively. Rats were divided into six groups and treated daily with a vehicle, lycopene (12.5 mg/kg), curcumin (2.4 mg/kg), a combination of lycopene and curcumin (12.5 mg/kg + 2.4 mg/kg) or finasteride (5 mg/kg). Histologic sections were examined via hematoxylin and eosin (H&E) staining and immunohistochemistry. Hormone and inflammatory indicators were detected via ELISA. Network pharmacology analysis was used to fully predict the therapeutic mechanism of the combination of lycopene and curcumin on BPH. RESULTS: Combination treatment significantly attenuated prostate hyperplasia, alleviated BPH pathological features and decreased the expression of Ki-67 in rats. The upregulation of the expression of testosterone, dihydrotestosterone (DHT), 5α-reductase, estradiol (E2) and prostate-specific antigen (PSA) in BPH rats was significantly blocked by the combination treatment. The expression levels of inflammatory factors including interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α were strongly inhibited by the combination treatment. From the network pharmacology analysis, it was found that the main targets for inhibiting BPH are AKT1, TNF, EGFR, STAT3 and PTGS2, which are enriched in pathways in cancer. CONCLUSION: The lycopene and curcumin combination is a potential and more effective agent to prevent or treat BPH.


Assuntos
Curcumina , Hiperplasia Prostática , Propionato de Testosterona , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Propionato de Testosterona/efeitos adversos , Ratos Sprague-Dawley , Licopeno/farmacologia , Licopeno/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Propionatos/farmacologia , Extratos Vegetais/farmacologia , Testosterona/metabolismo , Inflamação/tratamento farmacológico , Proliferação de Células
8.
Genes (Basel) ; 14(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107654

RESUMO

The tissue-specific expression and epigenetic dysregulation of many genes in cells derived from the postmortem brains of patients have been reported to provide a fundamental biological framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major depression. However, until recently, the impact of non-neuronal brain cells, which arises due to cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of techniques that directly evaluate their functionality. With the emergence of single-cell technologies, such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g., TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution of the brain's non-neuronal cells (in particular, microglia and different types of astrocytes) in the pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may affect neuronal functions in mental disorders. Finally, we present evidence that supports that microbiota transplantations from the affected individuals or mice provoke the corresponding disease-like behavior in the recipient mice, while specific bacterial species may have beneficial effects.


Assuntos
Epigênese Genética , Transtornos Mentais , Animais , Camundongos , Epigênese Genética/genética , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
9.
Front Nutr ; 10: 1116278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969810

RESUMO

Introduction: Cognition decline is associated with aging and certain diseases, such as neurodegenerative or neuropsychiatric disorders, diabetes and chronic kidney disease. Inflammation/neuroinflammation is considered an important causal factor, and experimental evidence suggests that anti-inflammatory natural compounds may effectively prevent cognitive decline. The goal of this study was to evaluate the effects of two natural bioactive agents, oligo-lactic acid (LAP) and fermented soy extract (ImmunBalance, IMB), on cognition in an adenine-induced cognitive impairment mouse model and to investigate the modulation of related biomarkers. Methods: Male C57 black mice were randomly assigned into the following experimental groups and received the corresponding treatments for 2 weeks before the use of adenine for model development: (1) negative control; (2) model control: injection of adenine at 50 mg/kg daily for 4 weeks; (3, 4) IMB groups: adenine injection and IMB oral gavage at 250 and 1,000 mg/kg BW, respectively; and (5) LAP group: adenine injection and LAP oral gavage at 1,000 mg/kg BW. One week after the model was developed, mice were evaluated for cognitive performances by using Y maze test, novel object recognition test, open field test, and Barnes maze tests. At the end of the experiment, brain tissues and cecum fecal samples were collected for analysis of gene expression and gut microbiota. Results: Mice treated with LAP or IMB had significantly improved spatial working memory, spatial recognition memory (LAP only), novel object recognition, and spatial learning and memory, compared with those in the model group. Gene expression analysis showed that, among a panel of cognition related genes, six of them (ELOVL2, GLUT4, Nestein, SNCA, TGFB1, and TGFB2) were significantly altered in the model group. LAP treatment significantly reversed expression levels of inflammatory/neuroinflammatory genes (SNCA, TGFB1), and IMB significantly reversed expression levels of genes related to inflammation/neuroinflammation, neurogenesis, and energy metabolism (ELOVL2, GLUT4, Nestin, TGFB1, and TGFB2). The altered microbiome was attenuated only by IMB. Discussion: In conclusion, our data showed that LAP improved cognition associated with regulating biomarkers related to neuroinflammation and energy metabolism, whereas IMB improved cognition associated with regulating biomarkers related to neuroinflammation, energy metabolism, and neurogenesis, and modulating gut microbiota. Our results suggest that LAP and IMB may improve cognitive performance in mice via distinct mechanisms of action.

10.
J Trace Elem Med Biol ; 77: 127138, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773556

RESUMO

BACKGROUND: Osteoporosis is a major health problem in postmenopausal women, and characterized by deteriorated bone mass and micro-architecture. There have been some clinical trials demonstrating the beneficial effects of vitamin-D and some trace elements on calcium absorption and attenuation of osteoporosis development. However, effects of the combination of vitamin-D and zinc on calcium absorption and osteoporosis have not been adequately investigated. METHODS: Network pharmacology was first performed to explore possible correlations between calcium/vitamin D/zinc and osteoporosis. Forty-nine female Sprague-Dawley rats (6 months old, 250 ± 20 g) were randomized into 7 experimental groups with 7 animals per group for the in vivo study, including one sham surgery control group, one ovariectomizing (OVX) group, and 5 OVX plus treatment groups. At the end of animal experiment, animal tibia and femur leg bones and blood were collected for H&E staining, bone microstructure analysis by a micro-CT, measurement of bone and serum Ca, P and Zn concentrations, and immunohistochemical detection of macrophage-colony stimulating factor receptor (M-CSFR) and receptor activator of nuclear factor-kappa B ligand (RANKL). RESULTS: The network pharmacology analysis identified 57 candidate targets that were related to the osteoporosis-Ca/VitD/Zn interconnections. Further pathway analysis suggested that the combined treatment of Ca, VitD and Zn attenuated osteoporosis via modulation of metabolic pathways. We found that a therapy with Ca/VitD-M/Zn-M (73 mg/kg/day Ca, 0.6 g/kg/day VitD3 and 0.6 mg/kg/day zinc citrate) could significantly suppress the progression of osteoporosis in rats. After the Ca/VitD-M/Zn-M treatment, the ratio of bone volume/tissue volume, trabecular number and the trabecular thickness were all significantly elevated while the extent of trabecular separation was significantly reduced. Additionally, both serum calcium and bone calcium levels were significantly upregulated by the Ca/VitD/Zn treatment in a dose-dependent manner. The combination of Ca/VitD-M/Zn-M was superiou to either Ca/VitD-L/Zn-L or Ca/VitD-H/Zn-H treatment for such an effect. Moreover, the osteoporosis-associated M-CSFR and RANKL factors were both significantly downregulated by the Ca/VitD-M/Zn-M treatment in bone tissues of OVX rats. CONCLUSIONS: The combined supplement of VitD and Zn facilitates the Ca(2 +) absorption and attenuates the development of osteoporosis via down-regulation of osteoporosis-associated factors M-CSFR and RANKL, thus potentially constitutes an alternative therapy for the postmenopausal osteoporosis.


Assuntos
Cálcio , Osteoporose , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Zinco/farmacologia , Zinco/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Densidade Óssea , Vitaminas/farmacologia , Ovariectomia
11.
Radiol Med ; 128(1): 58-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36627501

RESUMO

PURPOSE: To explore the characteristics of the hepatic fat content in athletes, and predict late gadolinium enhancement (LGE) based on magnetic resonance imaging-proton density fat fraction (MRI-PDFF). MATERIAL AND METHODS: From March 2020 to March 2021, 233 amateur athletes and 42 healthy sedentary controls were prospectively recruited. The liver fat content of four regions of interest (ROIs 1-4), the mean liver fat fraction (FF), cardiac function, and myocardium LGE were recorded, respectively. The values of ROIs 1-4 and FF were compared between athletes and controls. According to the liver fat content threshold for distinguishing athletes and controls, the cutoff total exercise time that induced a change in liver fat was obtained. The correlations among the liver fat content, cardiac function, and other parameters were analyzed. Moreover, the liver fat content was used to predict myocardium LGE by logistic regression. RESULTS: There were significant differences for the values of ROI 1, ROI 3, ROI 4, and FF between athletes and controls (allp< 0.05). The cutoff total exercise time for inducing a change in the liver fat content was 1680 h (area under the curve [AUC] = 0.593, specificity = 83.3,p< 0.05). Blood indexes, cardiac function, and basic clinical parameters were related to liver fat content (allp< 0.05). The prediction model for LGE had an AUC value of 0.829 for the receiver operator characteristic curve. CONCLUSION: MRI-PDFF could assess liver fat content and predict cardiac fibrosis in athletes for risk stratification and follow-up.


Assuntos
Meios de Contraste , Prótons , Humanos , Gadolínio , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética , Fibrose , Atletas
12.
Perfusion ; 38(7): 1453-1460, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817556

RESUMO

INTRODUCTION: To evaluate the effect of the cardiac cycle for the coronary artery opening and coronary stenosis at the plaque to determine the phase of measuring maximum diameters required for coronary artery disease (CAD). METHODS: This retrospective study assessed data for 208 consecutive patients who underwent coronary computed tomography angiography (CTA). The cross-sectional area and diameters of the opening of the left main coronary artery (LM), left anterior descending branch (LAD), left circumflex branch (LCX) and right coronary artery (RCA), the stenosis rate of involved vessels were measured in 10 cardiac cycles. And all their dynamic changes were estimated by the linear mixed model. The relationship between stenosis rate and opening orifice were analyzed by monofactorial variance. RESULTS: The opening parameters and stenosis rate of the four main coronary arteries varied within the cardiac cycle (p < .05). The maximum opening area occurred at the 45%-55% phase; The range of stenosis rate varied approximately 11%-14% and the maximum stenosis rate was at the 65% phase. The degree of vascular stenosis for LM, LAD and LCX were not associated with their corresponding opening diameters, but were positively intercorrelation with each other. CONCLUSION: For patients with CAD, the maximum coronary artery stenosis rate were at 65% phase and the maximum value of coronary artery opening were at 45%-55% phase, which were chosen for the appropriate measurement and evaluation by CTA.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Vasos Coronários/diagnóstico por imagem , Estudos Retrospectivos , Constrição Patológica , Angiografia Coronária/métodos , Estenose Coronária/diagnóstico por imagem
14.
World J Clin Cases ; 10(9): 2961-2968, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35434086

RESUMO

BACKGROUND: Struma ovarii is a rare specific ovarian tumor. It is a highly differentiated monodermal teratoma with a malignant transformation rate as low as 5%. Thus, malignant transformation and metastasis are extremely rare. The clinical manifestations of this disease are not typical and are easily misdiagnosed. CASE SUMMARY: A 55-year-old female patient had a history of pain in the right hepatic region for approximately 1 year. Computed tomography and magnetic resonance imaging showed a solid cystic mass in the right adnexal region and a solid mass in the right retroperitoneum. The patient underwent surgical resection, and the combined morphological and immunohistochemical results led to the final diagnosis of right struma ovarii with papillary carcinoma and right retroperitoneal lymph node metastasis. CONCLUSION: Malignant struma ovarii with distant metastasis is extremely rare, and the clinical manifestations of this disease are nonspecific. Accurate preoperative diagnoses are difficult to obtain, and pathological examination is the gold standard for diagnosing this disease.

15.
Front Pharmacol ; 12: 659577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220503

RESUMO

COVID-19, transmitted by SARS-CoV-2, is one of the most serious pandemic situations in the history of mankind, and has already infected a huge population across the globe. This horrendously contagious viral outbreak was first identified in China and within a very short time it affected the world's health, transport, economic, and academic sectors. Despite the recent approval of a few anti-COVID-19 vaccines, their unavailability and insufficiency along with the lack of other potential therapeutic options are continuing to worsen the situation, with valuable lives continuing to be lost. In this situation, researchers across the globe are focusing on repurposing prospective drugs and prophylaxis such as favipiravir, remdesivir, chloroquine, hydroxychloroquine, ivermectin, lopinavir-ritonavir, azithromycin, doxycycline, ACEIs/ARBs, rivaroxaban, and protease inhibitors, which were preliminarily based on in vitro and in vivo pharmacological and toxicological study reports followed by clinical applications. Based on available preliminary data derived from limited clinical trials, the US National Institute of Health (NIH) and USFDA also recommended a few drugs to be repurposed i.e., hydroxychloroquine, remdesivir, and favipiravir. However, World Health Organization later recommended against the use of chloroquine, hydroxychloroquine, remdesivir, and lopinavir/ritonavir in the treatment of COVID-19 infections. Combining basic knowledge of viral pathogenesis and pharmacodynamics of drug molecules as well as in silico approaches, many drug candidates have been investigated in clinical trials, some of which have been proven to be partially effective against COVID-19, and many of the other drugs are currently under extensive screening. The repurposing of prospective drug candidates from different stages of evaluation can be a handy wellspring in COVID-19 management and treatment along with approved anti-COVID-19 vaccines. This review article combined the information from completed clinical trials, case series, cohort studies, meta-analyses, and retrospective studies to focus on the current status of repurposing drugs in 2021.

16.
Epigenomics ; 13(15): 1231-1245, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318684

RESUMO

During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.


Assuntos
Transtorno Autístico/etiologia , Suscetibilidade a Doenças , Epigênese Genética , Variação Genética , Transtornos Mentais/etiologia , Transtorno Autístico/diagnóstico , Transtorno Autístico/tratamento farmacológico , Biomarcadores , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/tratamento farmacológico , MicroRNAs/genética , Fenótipo , Fatores de Risco
17.
Sci Rep ; 11(1): 15209, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312448

RESUMO

The aim was to evaluate the thoracic aorta in different cardiac phases to obtain the correct cardiac phase for measuring the maximum diameter required to predict aortic disease. Cardiac CT was performed on 97 patients for suspected coronary artery disease. The average diameter of ascending (AAD) and descending aorta (DAD) in the plane of pulmonary bifurcation, in the plane of the sinus junction (AAD [STJ] and DAD [STJ]), descending aorta in the plane of the diaphragm (DAD [Dia]), the diameter of the main pulmonary artery (MPAD), distance from the sternum to the spine (S-SD), and distance from the sternum to the ascending aorta (S-AAD) were assessed at 20 different time points in the cardiac cycle. Differences in aortic diameter in different cardiac phases and the correlation between aortic diameter and traditional risk factors were analyzed by the general linear mixed model. The diameter of the thoracic aorta reached the minimum at the phase of 95-0%, and reached the maximum at 30-35%. The maximum values of AAD, AAD (STJ), DAD, DAD (STJ), and DAD (Dia) were 32.51 ± 3.35 mm, 28.86 ± 3.01 mm, 23.46 ± 2.88 mm, 21.85 ± 2.58 mm, and 21.09 ± 2.66 mm, respectively. The maximum values of MPAD/AAD and DAD/AAD (STJ) were 0.8140 ± 0.1029, 0.7623 ± 0.0799, respectively. The diameter of the thoracic aorta varies with the cardiac phase. Analyzing the changes in aortic diameter, which can be done using cardiac CT, could provide a more accurate clinical measurement for predicting aortic disease.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aorta Torácica/fisiologia , Técnicas de Imagem Cardíaca , Tomografia Computadorizada por Raios X , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Front Pharmacol ; 12: 671498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122096

RESUMO

SARS-CoV-2 is the latest worldwide pandemic declared by the World Health Organization and there is no established anti-COVID-19 drug to combat this notorious situation except some recently approved vaccines. By affecting the global public health sector, this viral infection has created a disastrous situation associated with high morbidity and mortality rates along with remarkable cases of hospitalization because of its tendency to be high infective. These challenges forced researchers and leading pharmaceutical companies to find and develop cures for this novel strain of coronavirus. Besides, plants have a proven history of being notable wellsprings of potential drugs, including antiviral, antibacterial, and anticancer therapies. As a continuation of this approach, plant-based preparations and bioactive metabolites along with a notable number of traditional medicines, bioactive phytochemicals, traditional Chinese medicines, nutraceuticals, Ayurvedic preparations, and other plant-based products are being explored as possible therapeutics against COVID-19. Moreover, the unavailability of effective medicines against COVID-19 has driven researchers and members of the pharmaceutical, herbal, and related industries to conduct extensive investigations of plant-based products, especially those that have already shown antiviral properties. Even the recent invention of several vaccines has not eliminated doubts about safety and efficacy. As a consequence, many limited, unregulated clinical trials involving conventional mono- and poly-herbal therapies are being conducted in various areas of the world. Of the many clinical trials to establish such agents as credentialed sources of anti-COVID-19 medications, only a few have reached the landmark of completion. In this review, we have highlighted and focused on plant-based anti-COVID-19 clinical trials found in several scientific and authenticated databases. The aim is to allow researchers and innovators to identify promising and prospective anti-COVID-19 agents in clinical trials (either completed or recruiting) to establish them as novel therapies to address this unwanted pandemic.

19.
Biomed Pharmacother ; 138: 111426, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33762124

RESUMO

WangShiBoChiWan (WSBCW) is a commonly used Chinese herbal medicine for the treatment of functional gastrointestinal disorders. However, its preclinical efficacy and the mechanisms of action have not been adequately studied. The goals of this study were to evaluate the effects of WSBCW on gastrointestinal health and modulation of related biomarkers. Female C57BL mice were randomly assigned into one of the experimental groups consisting of the control, drug controls, and WSBCW at 40, 120, and 360 mg/kg BW. Whole gut transit, small intestinal motility, and intestinal barrier permeability were determined. The castor oil-induced diarrhea mouse model was used to determine the effect of WSBCW on the diarrhea type of irritable bowel syndrome (IBS-D). WSBCW increased whole gut transit and intestinal motility, improved intestinal permeability in healthy animals and alleviated diarrhea symptoms in IBS-D mice. WSBCW upregulated intestinal junction proteins, increased the abundance of Bifidobacterium genus, Desulfovibrio genus and inhibited Bacteroides fragillis group in the gut microbiota, increased intestinal villi lengths, and decreased blood levels of inflammatory cytokines. Our study provided preclinical evidence to verify the effectiveness of WSBCW in gastrointestinal health and elucidate mechanistic insights. The results warrant further investigations to evaluate the therapeutic efficacy of WSBCW on gastrointestinal disorders, such as IBS and IBD.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Medicina Herbária/métodos , Mediadores da Inflamação/antagonistas & inibidores , Junções Íntimas/efeitos dos fármacos , Animais , Diarreia/tratamento farmacológico , Diarreia/fisiopatologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Microbioma Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Mediadores da Inflamação/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/fisiologia , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/fisiologia
20.
Biomolecules ; 11(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671652

RESUMO

Peptide drugs, especially food-derived peptides, have a variety of functional activities including antiviral and may also have a therapeutic effect on COVID-19. In this study, comparing with the reported drugs, 79 peptides were found to bind to the key targets of COVID-19 virus with higher non-covalent interaction, while among them, six peptides showed high non-covalent interactions with the three targets, which may inhibit the COVID-19 virus. In the simulation, peptides of nine to 10 amino acids with a hydrophilic amino acid and acidic amino acid in the middle and aromatic amino acids on the side showed higher binding to angiotensin-converting enzyme 2 (ACE2). Peptides of five to six amino acids with a basic amnio acid in the head, acidic amnio acid in the neck, hydrophobicity group in the middle, and basic amino acids in the tail showed higher binding to COVID-19 virus main protease (Mpro), while those with basic amino acids and acidic amino acids in the two sides and aromatic amino acids in the middle might have stronger interaction with COVID-19 virus RNA-dependent RNA polymerase (RdRp).


Assuntos
Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Desenho de Fármacos , Alimento Funcional , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA