Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 194, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704988

RESUMO

BACKGROUND: Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS: A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS: This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.


Assuntos
Aedes , Vírus da Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Aedes/genética , Vírus da Dengue/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética
2.
PLoS Negl Trop Dis ; 16(9): e0010701, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074773

RESUMO

BACKGROUND: The surveillance of vector mosquitoes is essential for prevention and control of mosquito-borne diseases. In this study, we developed an internet-based vector mosquito monitor, MS-300, and evaluated its efficiency for the capture of the important vector mosquitoes, Aedes albopictus and Culex quinquefasciatus, in laboratory and field trials. METHODOLOGY/PRINCIPAL FINDINGS: The linear sizes of adult Ae. albopictus and Cx. quinquefasciatus were measured and an infrared window was designed based on these data. A device to specifically attract these two species and automatically transmit the number of captured mosquitoes to the internet was developed. The efficiency of the device in capturing the two species was tested in laboratory, semi-field and open field trials. The efficiency results for MS-300 for catching and identifying Ae. albopictus in laboratory mosquito-net cages were 98.5% and 99.3%, and 95.8% and 98.6%, respectively, for Cx. quinquefasciatus. In a wire-gauze screened house in semi-field trials, the efficiencies of MS-300 baited with a lure in catching Ae. albopictus and Cx. quinquefasciatus were 54.2% and 51.3%, respectively, which were significantly higher than 4% and 4.2% without the lure. The real-time monitoring data revealed two daily activity peaks for Ae. albopictus (8:00-10:00 and 17:00-19:00), and one peak for Cx. quinquefasciatus (20:00-24:00). During a 98-day surveillance trial in the field, totals of 1,118 Ae. albopictus and 2,302 Cx. quinquefasciatus were captured by MS-300. There is a close correlation between the number of captured mosquitoes and the temperature in the field, and a positive correlation in the species composition of the captured samples among the mosquitoes using MS-300, BioGents Sentinel traps and human landing catches. CONCLUSIONS/SIGNIFICANCE: The data support the conclusion that MS-300 can specifically and efficiently capture Ae. albopictus and Cx. quinquefasciatus, and monitor their density automatically in real-time. Therefore, MS-300 has potential for use as a surveillance tool for prevention and control of vector mosquitoes.


Assuntos
Aedes , Culex , Animais , Vetores de Doenças , Humanos , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...