Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904742

RESUMO

Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.

2.
J Theor Biol ; 575: 111645, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37863423

RESUMO

Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.


Assuntos
Crescimento Demográfico , Ciclo Celular , Proliferação de Células , Células Clonais , Fenótipo , Processos Estocásticos
3.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824755

RESUMO

Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized exponential growth. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture the departure from the exponential growth model in the initial growth phase. Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth kinetics and the presence of subpopulations with different growth rates that endured for many generations. Based on the hypothesis of existence of multiple inter-converting subpopulations, we developed a branching process model that captures the experimental observations.

4.
Cell Syst ; 8(6): 481-482, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247159

RESUMO

One snapshot of the peer review process for "Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species" (Stein-O'Brien et al., 2019).


Assuntos
Fenômenos Fisiológicos Celulares , Células/classificação , Aprendizado de Máquina
5.
J Bioinform Comput Biol ; 17(2): 1950012, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31057072

RESUMO

Identification of effective drug combinations for patients is an expensive and time-consuming procedure, especially for in vitro experiments. To accelerate the synergistic drug discovery process, we present a new classification model to identify more effective anti-cancer drug pairs using in silico network biology approach. Based on the hypotheses that the drug synergy comes from the collective effects on the biological network, therefore, we developed six network biology features, including overlap and distance of drug perturbation network, that were derived by using individual drug-perturbed transcriptome profiles and the relevant biological network analysis. Using publicly available drug synergy databases and three machine-learning (ML) methods, the model was trained to discriminate the positive (synergistic) and negative (nonsynergistic) drug combinations. The proposed models were evaluated on the test cases to predict the most promising network biology feature, which is the network degree activity, i.e. the synergistic effect between drug pairs is mainly accounted by the complementary signaling pathways or molecular networks from two drugs.


Assuntos
Biologia Computacional/métodos , Sinergismo Farmacológico , Aprendizado de Máquina , Bases de Dados de Produtos Farmacêuticos , Ontologia Genética , Humanos , Medicina de Precisão , Mapas de Interação de Proteínas/efeitos dos fármacos , Reprodutibilidade dos Testes , Transcriptoma
6.
Sci Rep ; 8(1): 17903, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538266

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

7.
Sci Rep ; 8(1): 12077, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104572

RESUMO

Cell state transition is at the core of biological processes in metazoan, which includes cell differentiation, epithelial-to-mesenchymal transition (EMT) and cell reprogramming. In these cases, it is important to understand the molecular mechanism of cellular stability and how the transitions happen between different cell states, which is controlled by a gene regulatory network (GRN) hard-wired in the genome. Here we use Boolean modeling of GRN to study the cell state transition of EMT and systematically compare four available methods to calculate the cellular stability of three cell states in EMT in both normal and genetically mutated cases. The results produced from four methods generally agree but do not totally agree with each other. We show that distribution of one-degree neighborhood of cell states, which are the nearest states by Hamming distance, causes the difference among the methods. From that, we propose a new method based on one-degree neighborhood, which is the simplest one and agrees with other methods to estimate the cellular stability in all scenarios of our EMT model. This new method will help the researchers in the field of cell differentiation and cell reprogramming to calculate cellular stability using Boolean model, and then rationally design their experimental protocols to manipulate the cell state transition.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Transição Epitelial-Mesenquimal/genética
8.
Sci Rep ; 7(1): 8815, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821810

RESUMO

Many behaviors of cancer, such as progression, metastasis and drug resistance etc., cannot be fully understood by genetic mutations or intracellular signaling alone. Instead, they are emergent properties of the cell community which forms a tumor. Studies of tumor heterogeneity reveal that many cancer behaviors critically depend on intercellular communication between cancer cells themselves and between cancer-stromal cells by secreted signaling molecules (ligands) and their cognate receptors. We analyzed public cancer transcriptome database for changes in cell-cell interactions as the characteristic of malignancy. We curated a list (>2,500 ligand-receptor pairs) and identified their joint enrichment in tumors from TCGA pan-cancer data. From single-cell RNA-Seq data for a case of melanoma and the specificity of the ligand-receptor interactions and their gene expression measured in individual cells, we constructed a map of a cell-cell communication network that indicates what signal is exchanged between which cell types in the tumor. Such networks establish a new formal phenotype of cancer which captures the cell-cell communication structure - it may open new opportunities for identifying molecular signatures of coordinated behaviors of cancer cells as a population - in turn may become a determinant of cancer progression potential and prognosis.

9.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28490602

RESUMO

The notion of an attractor has been widely employed in thinking about the nonlinear dynamics of organisms and biological phenomena as systems and as processes. The notion of a landscape with valleys and mountains encoding multiple attractors, however, has a rigorous foundation only for closed, thermodynamically non-driven, chemical systems, such as a protein. Recent advances in the theory of nonlinear stochastic dynamical systems and its applications to mesoscopic reaction networks, one reaction at a time, have provided a new basis for a landscape of open, driven biochemical reaction systems under sustained chemostat. The theory is equally applicable not only to intracellular dynamics of biochemical regulatory networks within an individual cell but also to tissue dynamics of heterogeneous interacting cell populations. The landscape for an individual cell, applicable to a population of isogenic non-interacting cells under the same environmental conditions, is defined on the counting space of intracellular chemical compositions x = (x1,x2, … ,xN ) in a cell, where xℓ is the concentration of the ℓth biochemical species. Equivalently, for heterogeneous cell population dynamics xℓ is the number density of cells of the ℓth cell type. One of the insights derived from the landscape perspective is that the life history of an individual organism, which occurs on the hillsides of a landscape, is nearly deterministic and 'programmed', while population-wise an asynchronous non-equilibrium steady state resides mostly in the lowlands of the landscape. We argue that a dynamic 'blue-sky' bifurcation, as a representation of Waddington's landscape, is a more robust mechanism for a cell fate decision and subsequent differentiation than the widely pictured pitch-fork bifurcation. We revisit, in terms of the chemostatic driving forces upon active, living matter, the notions of near-equilibrium thermodynamic branches versus far-from-equilibrium states. The emergent landscape perspective permits a quantitative discussion of a wide range of biological phenomena as nonlinear, stochastic dynamics.


Assuntos
Metabolismo/fisiologia , Modelos Biológicos , Processos Estocásticos
10.
Proc Natl Acad Sci U S A ; 114(9): 2271-2276, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28167799

RESUMO

Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Ativinas/farmacologia , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mesoderma/citologia , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Análise de Célula Única , Fatores de Transcrição/metabolismo
11.
Curr Opin Biotechnol ; 39: 207-214, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27152696

RESUMO

Single-cell analyses of transcript and protein expression profiles-more precisely, single-cell resolution analysis of molecular profiles of cell populations-have now entered the center stage with widespread applications of single-cell qPCR, single-cell RNA-Seq and CyTOF. These high-dimensional population snapshot techniques are complemented by low-dimensional time-resolved, microscopy-based monitoring methods. Both fronts of advance have exposed a rich heterogeneity of cell states within uniform cell populations in many biological contexts, producing a new kind of data that has triggered computational analysis methods for data visualization, dimensionality reduction, and cluster (subpopulation) identification. The next step is now to go beyond collecting data and correlating data points: to connect the dots, that is, to understand what actually underlies the identified data patterns. This entails interpreting the 'clouds of points' in state space as a manifestation of the underlying molecular regulatory network. In that way control of cell state dynamics can be formalized as a quasi-potential landscape, as first proposed by Waddington. We summarize key methods of data acquisition and computational analysis and explain the principles that link the single-cell resolution measurements to dynamical systems theory.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Célula Única/métodos , Biologia de Sistemas/métodos , Animais , Humanos
12.
Oncotarget ; 7(7): 7415-25, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26871731

RESUMO

During a cell state transition, cells travel along trajectories in a gene expression state space. This dynamical systems framework complements the traditional concept of molecular pathways that drive cell phenotype switching. To expose the structure that hinders cancer cells from exiting robust proliferative state, we assessed the perturbation capacity of a drug library and identified 16 non-cytotoxic compounds that stimulate MCF7 breast cancer cells to exit from proliferative state to differentiated state. The transcriptome trajectories triggered by these drugs diverged, then converged. Chemical structures and drug targets of these compounds overlapped minimally. However, a network analysis of targeted pathways identified a core signaling pathway--indicating common stress-response and down-regulation of STAT1 before differentiation. This multi-trajectory analysis explores the cells' state transition with a multitude of perturbations in combination with traditional pathway analysis, leading to an encompassing picture of the dynamics of a therapeutically desired cell-state switching.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Mama/genética , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Sci Rep ; 3: 3039, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24154593

RESUMO

Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape.


Assuntos
Fenômenos Fisiológicos Celulares , Entropia , Modelos Biológicos , Transdução de Sinais , Algoritmos , Diferenciação Celular , Linhagem da Célula , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco/fisiologia
14.
Trends Genet ; 27(2): 55-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21146896

RESUMO

Cell-type reprogramming, the artificial induction of a switch of cell lineage and developmental stage, holds great promise for regenerative medicine. However, how does the metazoan body itself 'program' the various cell lineages in the first place? Knowledge of how multipotent cells make cell-fate decisions and commit to a particular lineage is crucial for a rational reprogramming strategy and to avoid trial-and-error approaches in choosing the appropriate set of transcription factors to use. In the past few years, a general principle has emerged in which small gene circuits of cross-inhibition and self-activation govern the decision at branch points of cell development. A formal theoretical treatment of such circuits that deal with their dynamics on the 'epigenetic landscape' could offer some guidance to find the optimal way of cell reprogramming.


Assuntos
Linhagem da Célula , Redes Reguladoras de Genes , Animais , Epigênese Genética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...