Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Build Simul ; 16(1): 133-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36035815

RESUMO

Outdoor fresh air ventilation plays a significant role in reducing airborne transmission of diseases in indoor spaces. School classrooms are considerably challenged during the COVID-19 pandemic because of the increasing need for in-person education, untimely and incompleted vaccinations, high occupancy density, and uncertain ventilation conditions. Many schools started to use CO2 meters to indicate air quality, but how to interpret the data remains unclear. Many uncertainties are also involved, including manual readings, student numbers and schedules, uncertain CO2 generation rates, and variable indoor and ambient conditions. This study proposed a Bayesian inference approach with sensitivity analysis to understand CO2 readings in four primary schools by identifying uncertainties and calibrating key parameters. The outdoor ventilation rate, CO2 generation rate, and occupancy level were identified as the top sensitive parameters for indoor CO2 levels. The occupancy schedule becomes critical when the CO2 data are limited, whereas a 15-min measurement interval could capture dynamic CO2 profiles well even without the occupancy information. Hourly CO2 recording should be avoided because it failed to capture peak values and overestimated the ventilation rates. For the four primary school rooms, the calibrated ventilation rate with a 95% confidence level for fall condition is 1.96±0.31 ACH for Room #1 (165 m3 and 20 occupancies) with mechanical ventilation, and for the rest of the naturally ventilated rooms, it is 0.40±0.08 ACH for Room #2 (236 m3 and 21 occupancies), 0.30±0.04 or 0.79±0.06 ACH depending on occupancy schedules for Room #3 (236 m3 and 19 occupancies), 0.40±0.32,0.48±0.37,0.72±0.39 ACH for Room #4 (231 m3 and 8-9 occupancies) for three consecutive days.

2.
J Environ Radioact ; 240: 106752, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628245

RESUMO

The incremental cost effectiveness ratios for implementing a recent recommendation to install a more radon resistant foundation barrier were modelled for new and existing housing in 2016, for each province and territory in Canada. Cost-utility analyses were conducted, in which the health benefit of an intervention was quantified in quality-adjusted life years, to help guide policymakers considering increasing investment in radon reduction in housing to reduce the associated lung cancer burden shouldered by the health care system. Lung cancer morbidity was modelled using a lifetable analysis that incorporated lung cancer incidence and survival time for localized, regional, and distant stages of diagnoses for both non-small cell and small cell lung cancer. The model accounted for surgical or advanced lung cancer treatment costs avoided, and average health care costs incurred for radon-attributable lung cancer cases prevented by the intervention. The incremental implementation of radon interventions in the housing stock was modelled over a lifetime horizon, and a discount rate of 1.5% was adopted. This radon intervention in new housing was cost effective in all but one region, ranging from $18,075/QALY (15,704; 20,178) for the Yukon to $58,454/QALY (52,045; 65,795) for British Columbia. A sequential analysis was conducted to compare intervention in existing housing for mitigation thresholds of 200 and 100 Bq/m3. This intervention in existing housing was cost effective at a mitigation threshold of 200 Bq/m3 in regions with higher radon levels, ranging from $33,247/QALY (27,699; 39,377) for the Yukon to $61,960/QALY (46,932; 113,737) for Newfoundland, and more cost effective at a threshold of 200 than 100 Bq/m3. More lung cancer deaths can be prevented by intervention in new housing than in existing housing; it was estimated that the proposed intervention in new housing would prevent a mean of 446 (416; 477) lung cancer cases annually. The cost effectiveness of increased radon resistance in foundation barriers in housing varied widely, and would support adopting this intervention in new housing across Canada and in existing housing in higher radon regions. This study provides further evidence that the most cost effective way of responding to the geographically variable radon burden is by implementing specific regional radon reduction policies.


Assuntos
Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Monitoramento de Radiação , Radônio , Colúmbia Britânica , Análise Custo-Benefício , Habitação , Humanos , Neoplasias Pulmonares/prevenção & controle , Radônio/análise
3.
Radiat Prot Dosimetry ; 196(1-2): 17-25, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34423842

RESUMO

The performance of radon barrier materials currently available for housing foundations was evaluated using a unique radon infiltration building envelope test system that was designed to test radon prevention and mitigation systems using real world construction techniques. The reduction in radon concentration measured across the air barrier in the foundations has been used to evaluate five representative barrier materials installed in the radon infiltration building envelope test facility. The reduction in radon concentration in the mock house varied from 68% for 6 mil polyethylene to 98% for the spray polyurethane foam. The five representative barrier materials were selected after determining the radon diffusion coefficient and the corresponding radon resistance from samples of 14 barrier materials in a radon diffusion testing chamber. The Canadian experience evaluating whether radon barrier materials would satisfy building code requirements was described.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Canadá , Materiais de Construção , Habitação , Radônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...