Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6683): 634-639, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330133

RESUMO

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics.

2.
Nat Mater ; 23(1): 58-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857889

RESUMO

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state.

3.
Adv Mater ; 36(13): e2310249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118065

RESUMO

Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well-quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well-quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred-nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law.

4.
Nat Commun ; 14(1): 7119, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932274

RESUMO

Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

5.
Nat Commun ; 14(1): 7596, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989754

RESUMO

An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4 flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase.

6.
Phys Rev Lett ; 130(8): 086201, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898119

RESUMO

In quantum anomalous Hall (QAH) insulators, the interior is insulating but electrons can travel with zero resistance along one-dimensional (1D) conducting paths known as chiral edge channels (CECs). These CECs have been predicted to be confined to the 1D edges and exponentially decay in the two-dimensional (2D) bulk. In this Letter, we present the results of a systematic study of QAH devices fashioned in a Hall bar geometry of different widths under gate voltages. At the charge neutral point, the QAH effect persists in a Hall bar device with a width of only ∼72 nm, implying the intrinsic decaying length of CECs is less than ∼36 nm. In the electron-doped regime, we find that the Hall resistance deviates quickly from the quantized value when the sample width is less than 1 µm. Our theoretical calculations suggest that the wave function of CEC first decays exponentially and then shows a long tail due to disorder-induced bulk states. Therefore, the deviation from the quantized Hall resistance in narrow QAH samples originates from the interaction between two opposite CECs mediated by disorder-induced bulk states in QAH insulators, consistent with our experimental observations.

7.
Nat Commun ; 14(1): 770, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765068

RESUMO

One-dimensional chiral interface channels can be created at the boundary of two quantum anomalous Hall (QAH) insulators with different Chern numbers. Such a QAH junction may function as a chiral edge current distributer at zero magnetic field, but its realization remains challenging. Here, by employing an in-situ mechanical mask, we use molecular beam epitaxy to synthesize QAH insulator junctions, in which two QAH insulators with different Chern numbers are connected along a one-dimensional junction. For the junction between Chern numbers of 1 and -1, we observe quantized transport and demonstrate the appearance of the two parallel propagating chiral interface channels along the magnetic domain wall at zero magnetic field. For the junction between Chern numbers of 1 and 2, our quantized transport shows that a single chiral interface channel appears at the interface. Our work lays the foundation for the development of QAH insulator-based electronic and spintronic devices and topological chiral networks.

8.
Nano Lett ; 23(3): 1093-1099, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715442

RESUMO

The quantum anomalous Hall (QAH) insulator carries dissipation-free chiral edge current and thus provides a unique opportunity to develop energy-efficient transformative information technology. Despite promising advances, the QAH insulator has thus far eluded any practical applications. In addition to its low working temperature, the QAH state in magnetically doped topological insulators usually deteriorates with time in ambient conditions. In this work, we store three QAH devices with similar initial properties in different environments. The QAH device without a protection layer in air shows clear degradation and becomes hole-doped. The QAH device kept in an argon glovebox without a protection layer shows no measurable degradation after 560 h, and the device protected by a 3 nm AlOx protection layer in air shows minimal degradation with stable QAH properties. Our work shows a route to preserve the dissipation-free chiral edge state in QAH devices for potential applications in quantum information technology.

9.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302957

RESUMO

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

10.
Phys Rev Lett ; 128(21): 216801, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687436

RESUMO

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.

11.
Nano Lett ; 21(18): 7691-7698, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34468149

RESUMO

Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. We demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, whereas the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films.

12.
Nat Commun ; 12(1): 79, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397964

RESUMO

The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial "topological Hall effect"-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications.

13.
Nature ; 588(7838): 419-423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328665

RESUMO

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...