Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 46(5): 707-716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36829077

RESUMO

Algae-bacteria symbiosis can promote the growth of microalgae and improve the efficiency of wastewater treatment. Attached culture is an efficient culture technique for microalgae, with benefits of high yield, low water consumption and easy harvesting. However, the promoting effects of bacteria on microalgae in attached culture are still unclear. In this study, different forms of a nitrogen-fixing bacteria, Azotobacter beijerinckii (including bacteria supernatant, live bacteria, and broken bacteria), were co-cultured with Chlorella pyrenoidosa in an attached culture system using wastewater as the culture medium. The results showed that the broken A. beijerinckii form had the best growth promotion effect on C. pyrenoidosa. Compared with the pure algae culture, the biomass of C. pyrenoidosa increased by 71.8% and the protein increased by 28.2%. The live bacteria form had the best effect on improving the efficiency of wastewater treatment by C. pyrenoidosa, with the COD, PO43- and NH4+-N removal rates increased by 20.8%, 18.5% and 8.9%, respectively, in comparison with the pure algae culture. The attached co-culture mode promoted the growth of C. pyrenodisa better than the suspended co-culture mode. This research offers a new way for improving microalgae biomass and wastewater treatment by attached algae-bacteria symbiont.


Assuntos
Chlorella , Microalgas , Bactérias Fixadoras de Nitrogênio , Purificação da Água , Biomassa , Técnicas de Cocultura , Nitrogênio/metabolismo
2.
Chemosphere ; 313: 137409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36457265

RESUMO

Soil salinization seriously affects crop yield and soil productivity. The application of bacteria and microalgae has been considered as a promising strategy to alleviate soil salinization. However, the effect of bacteria-microalgae symbiosis on saline-alkali land is still unclear. This study evaluated the effects of Azotobacter beijerinckii, Chlorella pyrenoidosa, and their combined application on the wheat growth and saline-alkali soil improvement. The results showed that, among all the treatments, A. beijerinckii + live C. pyrenoidosa combined inoculation group (BA) had the best effect on increasing wheat plant biomass, improving salt tolerance, and improving soil fertility. The dry weight of wheat plant in the BA group increased by 66.7%, 17.4%, and 35.0%, respectively, compared with the control group (CK), A. beijerinckii inoculation group (B), and live C. pyrenoidosa inoculation group (A). The total nitrogen content of wheat plant in the BA group increased by 69.5%, 76.7%, and 71.1%, compared with the CK, B, and A group. The proline content of wheat plant in the BA group was 100% higher than that in the CK group. The N/P ratio and K/Na ratio of wheat plant increased by 157% and 12.9% in the BA group compared with the CK group, respectively, which was more conducive to alleviating nitrogen limitation and salt stress. The A. beijerinckii + live C. pyrenoidosa inoculation treatment better reduced soil pH and improved the availability of phosphorus in soil. This study illustrated the comprehensive application prospects of bacteria-microalgae interactions on wheat growth promotion and soil improvement in saline-alkali land, and provided a new effective strategy for improving saline-alkali soil quality and increasing crop productivity.


Assuntos
Chlorella , Microalgas , Bactérias Fixadoras de Nitrogênio , Solo/química , Triticum , Álcalis , Bactérias , Nitrogênio
3.
Chemosphere ; 306: 135604, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35809743

RESUMO

A symbiotic system of algae-bacteria, and attached cultivation, are two ways to increase microalgae biomass, and beneficially effect wastewater treatment. However, the possible advantages of the algae-bacteria co-culture in attached cultivation, are still unclear. This paper investigates the effects of different morphologies of a phosphate solubilizing bacteria-Paenibacillus xylanexedens (bacteria supernatant, bacteria, broken bacteria), on the growth of microalgae-Chlorella pyrenoidosa and wastewater treatment in an attached co-culture system. The results show that the broken bacteria had the most significant effect, with the biomass and protein content of Chlorella pyrenoidosa increasing by 125.67% and 25.04%; and the removal rate of COD, NH4+-N and PO43- in wastewater increasing by 23.57%, 146.15% and 9.96% respectively. This indicates that the intracellular material of the Paenibacillus xylanexedens was more effective in promoting the biomass growth of Chlorella pyrenoidosa and the removal rates of COD, NH4+-N and PO43-, compared to the algae growing without the bacteria. The algae-bacteria symbiotic attached mode was superior to the suspended mode, in terms of both Chlorella pyrenoidosa biomass enhancement and effective wastewater treatment. The addition of different morphologies of Paenibacillus xylanexedens significantly enlarged the difference between the two culture modes. This study provides a new method for coupled algae-bacteria co-cultures for wastewater treatment, based on the symbiotic effect.


Assuntos
Chlorella , Microalgas , Paenibacillus , Purificação da Água , Biomassa , Chlorella/metabolismo , Lipídeos , Microalgas/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...