Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Biol Macromol ; 276(Pt 1): 133792, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992539

RESUMO

Doxorubicin (Dox), a chemotherapeutic agent frequently used to treat cancer, elicits cardiotoxicity, a condition referred to as Dox-induced cardiotoxicity (DIC), and ferroptosis plays a contributory role in its pathophysiology. Fucoidan, a polysaccharide with various biological activities and safety profile, has potential therapeutic and pharmaceutical applications. This study aimed to investigate the protective effects and underlying mechanisms of fucoidan in DIC. Echocardiography, biomarkers of cardiomyocyte injury, serum creatine kinase, creatine kinase isoenzyme and lactate dehydrogenase, as well as histological staining results, revealed that fucoidan significantly reduced myocardial damage and improved cardiac function in DIC mice. Transmission electron microscopy; levels of lipid reactive oxygen species, glutathione, and malondialdehyde; ferroptosis-related markers; and regulatory factors such as glutathione peroxidase 4 (GPX4), transferrin receptor protein-1, ferritin heavy chain-1, heme oxygenase-1 in the heart tissue were measured to explore the effect of fucoidan on Dox-induced ferroptosis. These results suggested that fucoidan could inhibit cardiomyocyte ferroptosis caused by Dox. In vitro experiments revealed that silencing nuclear factor-erythroid 2-related factor 2 (Nrf2) in cardiomyocytes reduced the inhibitory effect of fucoidan on ferroptosis. Hence, fucoidan has the potential to ameliorate DIC by inhibiting ferroptosis via the Nrf2/GPX4 pathway.

2.
Ann Clin Microbiol Antimicrob ; 23(1): 52, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879505

RESUMO

BACKGROUND: Emerging evidence has indicated a link between the gut microbiota and acute lymphoblastic leukaemia (ALL). However, the acute changes in gut microbiota during chemotherapy and the predictive value of baseline gut microbiota in infectious complication remain largely unknown. METHODS: Faecal samples (n = 126) from children with ALL (n = 49) undergoing induction chemotherapy were collected at three timepoints, i.e., initiation of chemotherapy (baseline, T0), 7 days (T1) and 33 days (T2) after initiation of chemotherapy. Gut microbiome profile was performed via metagenomic shotgun sequencing. The bioBakery3 pipeline (Kneaddata, Metaphlan 3 and HUMAnN) was performed to assign taxonomy and functional annotations. Gut microbiome at T0 were used to predict infection during chemotherapy. RESULTS: The microbial diversities and composition changed significantly during chemotherapy, with Escherichia coli, Klebsiella pneumoniae and Bifidobacterium longum being the most prominent species. The microbial metabolic pathways were also significantly altered during chemotherapy, including the pathway of pyruvate fermentation to acetate and lactate, and assimilatory sulfate reduction pathway. The receiver operating characteristic (ROC) models based on Bifidobacterium longum at T0 could predict infectious complications during the first month of chemotherapy with the area under the curve (AUC) of 0.720. CONCLUSIONS: Our study provides new insights into the acute changes in microbial and functional characteristics in children with ALL during chemotherapy. The baseline gut microbiota could be potential biomarkers for infections during chemotherapy. TRIAL REGISTRATION: The study was approved by the Ethics Committee of Zhujiang Hospital, Southern Medical University (2021-KY-171-01) and registered on http://www.chictr.org.cn (ChiCTR2200065406, Registration Date: November 4, 2022).


Assuntos
Fezes , Microbioma Gastrointestinal , Metagenômica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Masculino , Fezes/microbiologia , Criança , Pré-Escolar , Quimioterapia de Indução , Biomarcadores , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma , Escherichia coli/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos
3.
Nature ; 631(8020): 319-327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898275

RESUMO

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.


Assuntos
Técnicas de Química Sintética , Oligossacarídeos , Açúcares , Radicais Livres/química , Radicais Livres/metabolismo , Glicosilação/efeitos da radiação , Indicadores e Reagentes/química , Luz , Oligossacarídeos/síntese química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/efeitos da radiação , Estereoisomerismo , Açúcares/síntese química , Açúcares/química , Açúcares/metabolismo , Açúcares/efeitos da radiação
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1621-1631, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621947

RESUMO

Network pharmacology was employed to probe into the mechanism of Fushen Granules in treating peritoneal dialysis-rela-ted peritonitis(PDRP) in rats. The main active components of Fushen Granules were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and their targets were predicted. PDRP-related targets were retrieved from DisGeNET and other databases. The common targets shared by the drug and the disease were identified by the online tool, and protein-protein interaction(PPI) network of the common targets. The obtained 276 common targets were imported into DAVID for GO function enrichment and KEGG pathway enrichment. The main signaling pathway of Fushen Granules in the treatment of PDRP was predicted as Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB. The rat model of uremia was induced by 5/6 nephrectomy. From two weeks after operation, the rat model of peritoneal dialysis(PD) was established by intraperitoneal injection of 20 mL dialysate with 1.25% glucose every day. The sham operation group and model group received 2 mL normal saline by gavage every day. The rats in Fushen Gra-nules groups were administrated with 2 mL solutions of low-(0.54 g·kg~(-1)), medium-(1.08 g·kg~(-1)) and high-dose(2.16 g·kg~(-1)) Fushen Granules every day. The bifico group received 2 mL(113.4 mg·kg~(-1)) of bifico solution every day. At the end of the 8th week, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in each group were measured. The serum levels of hypersensitive C reactive protein(hs-CRP), tumor necrosis factor(TNF)-α, and interleukin(IL)-6 were measured, and the pathological changes in the colon tissue were observed by hematoxylin-eosin(HE) staining. The serum levels of lipopolysaccharide(LPS) and lipopolysaccharide-binding protein(LBP) of rats were measured, and the expression levels of LBP, TLR4, NF-κB p65, inhibitor of κB kinase α(IκBα), TNF-α, and IL-1ß in the colon tissue were determined. Compared with sham operation group, the model group had abnormal structure of all layers of colon tissue, sparse and shorter intestinal villi, visible edema in mucosal layer, wider gap, obvious local inflammatory cell infiltration, significantly decreased body weight(P<0.01), and significantly increased kidney function index(Scr, BUN) content(P<0.01). Serum levels of inflammatory cytokines(hs-CRP, TNF-α, IL-6), LPS and LBP were significantly increased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß were significantly increased(P<0.01), and protein expressions of IκBα were significantly decreased(P<0.01). Compared with model group, intestinal villi damage in colonic tissue of rats in low-, medium-and high-dose Fushen Granules groups and bifico group were alleviated to different degrees, edema in submucosa was alleviated, space was narrowed, and inflammatory cell infiltration in lamina propria was reduced. The contents of renal function index(Scr, BUN) and serum inflammatory factors(hs-CRP, TNF-α, IL-6) were significantly decreased(P<0.05 or P<0.01) in medium-and high-dose Fushen Granules groups and bifico group(P<0.05 or P<0.01). Serum LPS and LBP contents in Fushen Granules group and bifico group were significantly decreased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß in Fushen Granules group were significantly decreased(P<0.05 or P<0.01), and protein expressions of IκBα were significantly increased(P<0.01). The expression of LBP protein in bifico group was significantly decreased(P<0.01). The results suggest that Fushen Granules can protect the residual renal function of PD rats, reduce the inflammatory response, and protect the colon tissue. Based on network pharmacology, TLR4/NF-κB pathway may be the main signaling pathway of Fushen granule in the treatment of PDRP. The results showed that Fushen Granules could improve intestinal inflammation and protect intestinal barrier to prevent PDRP by regulating the expression of key factors in TLR4/NF-κB pathway in colon of PD rats.


Assuntos
Experimentação Animal , Diálise Peritoneal , Peritonite , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Farmacologia em Rede , Fator de Necrose Tumoral alfa/metabolismo , Proteína C-Reativa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Interleucina-6 , Lipopolissacarídeos , Peritonite/tratamento farmacológico , Diálise Peritoneal/efeitos adversos , Edema
5.
Int J Biol Macromol ; 263(Pt 2): 130539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432263

RESUMO

Hydroxypropyl methylcellulose (HPMC) was employed as an intermediate layer to enhance interfacial interaction between chitosan (CS) coating and tangerine fruits, thereby improving the preservation effect. Owing to the low surface tension of tangerine fruit (26.04 mN/m), CS coating solutions showed poor wetting properties on fruit peels (contact angle > 100°). However, by applying a 1.0 % (w/v) HPMC coating on fruits, the contact angle of CS solutions with concentrations of 0.5 %, 1.0 %, and 1.5 % (w/v) decreased to 47.0°, 47.4°, and 48.5°, respectively, whereas the spreading coefficient increased to -16.0 mN/m, -17.6 mN/m and -19.8 mN/m, respectively. Subsequently, the effects of the coatings on fruit quality were investigated. The results demonstrated the promising performance of HPMC-CS two-layer coating in inhibiting fruit respiration, reducing decay rate, and maintaining nutrient content. Notably, HPMC-1.5%CS coating not only reduced the decay rate of tangerine fruit by 45 % and 31 %, in comparison to the uncoated group (CK) and pure CS coating respectively, but also maintained a high content of ascorbic acid. Therefore, this study confirmed that the use of amphiphilic polymers for improving the surface properties of fruits can effectively facilitate the wetting of hydrophilic coatings on fruits, and significantly improve the fresh-keeping performance of edible coatings.


Assuntos
Quitosana , Citrus , Molhabilidade , Derivados da Hipromelose , Frutas , Conservação de Alimentos/métodos , Metilcelulose
6.
Diabetes ; 73(4): 618-627, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211557

RESUMO

At present, safe and effective treatment drugs are urgently needed for diabetic kidney disease (DKD). Circulating protein biomarkers with causal genetic evidence represent promising drug targets, which provides an opportunity to identify new therapeutic targets. Summary data from two protein quantitative trait loci studies are presented, one involving 4,907 plasma proteins data from 35,559 individuals and the other encompassing 4,657 plasma proteins among 7,213 European Americans. Summary statistics for DKD were obtained from a large genome-wide association study (3,345 cases and 2,372 controls) and the FinnGen study (3,676 cases and 283,456 controls). Mendelian randomization (MR) analysis was conducted to examine the potential targets for DKD. The colocalization analysis was used to detect whether the potential proteins exist in the shared causal variants. To enhance the credibility of the results, external validation was conducted. Additionally, enrichment analysis, assessment of protein druggability, and the protein-protein interaction networks were used to further enrich the research findings. The proteome-wide MR analyses identified 21 blood proteins that may causally be associated with DKD. Colocalization analysis further supported a causal relationship between 12 proteins and DKD, with external validation confirming 4 of these proteins, and TGFBI was affirmed through two separate group data sets. These results indicate that targeting these four proteins could be a promising approach for treating DKD, and warrant further clinical investigations.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Proteoma/genética , Nefropatias Diabéticas/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Proteínas Sanguíneas , Polimorfismo de Nucleotídeo Único
7.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836095

RESUMO

Drought has become a serious environmental factor that affects the growth and yield of plants. Fructan, as an important storage compound in garlic, plays an important role in drought tolerance. Genomic changes in plants under drought stress clarify the molecular mechanism of plants' responses to stress. Therefore, we used RNA-seq to determine the transcriptomic changes in garlic under drought stress and identified the key module related to fructan metabolism by weighted gene co-expression network analysis. We conducted a comprehensive analysis of the garlic transcriptome under drought stress over a time course (0, 3, 6, 9, 12, 15 d). Drought significantly induces changes in gene expression. The number of specifically expressed genes were 1430 (3 d), 399 (6 d), 313 (9 d), 351 (12 d), and 1882 (15 d), and only 114 genes responded at each time point. The number of upregulated DEGs was higher than the number of downregulated DEGs. Gene ontology and a Kyoto Encyclopedia of Genes and Genomes analysis showed that garlic was more likely to cause changes in carbohydrate metabolism pathways under drought stress. Fructan content measurements showed that drought stress significantly induced fructan accumulation in garlic. To determine whether there were modules involved in the transcriptional regulation of fructan content in garlic, we further analyzed the genes related to fructan metabolism using WGCNA. They were enriched in two modules, with F-box protein and GADPH as hub genes, which are involved in garlic fructan metabolism in response to drought stress. These results provide important insights for the future research and cultivation of drought-tolerant garlic varieties.

8.
Genes (Basel) ; 14(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372470

RESUMO

As the main reserve carbohydrate in garlic, fructan contributes to garlic's yield and quality formation. Numerous studies have shown that plant fructan metabolism induces a stress response to adverse environments. However, the transcriptional regulation mechanism of garlic fructan in low-temperature environments is still unknown. In this study, the fructan metabolism of garlic seedlings under low-temperature stress was revealed by transcriptome and metabolome approaches. With the extension of stress time, the number of differentially expressed genes and metabolites increased. Using weighted gene co-expression network analysis (WGCNA), three key enzyme genes related to fructan metabolism were screened (a total of 12 transcripts): sucrose: sucrose 1-fructosyltransferase (1-SST) gene; fructan: fructan 6G fructosyltransferase (6G-FFT) gene; and fructan 1-exohydrolase (1-FEH) gene. Finally, two hub genes were obtained, namely Cluster-4573.161559 (6G-FFT) and Cluster-4573.153574 (1-FEH). The correlation network and metabolic heat map analysis between fructan genes and carbohydrate metabolites indicate that the expression of key enzyme genes in fructan metabolism plays a positive promoting role in the fructan response to low temperatures in garlic. The number of genes associated with the key enzyme of fructan metabolism in trehalose 6-phosphate was the highest, and the accumulation of trehalose 6-phosphate content may mainly depend on the key enzyme genes of fructan metabolism rather than the enzyme genes in its own synthesis pathway. This study not only obtained the key genes of fructan metabolism in garlic seedlings responding to low temperatures but also preliminarily analyzed its regulatory mechanism, providing an important theoretical basis for further elucidating the cold resistance mechanism of garlic fructan metabolism.


Assuntos
Alho , Metabolômica , Frutanos/metabolismo , Alho/metabolismo , Temperatura , Transcriptoma , Redes Reguladoras de Genes
9.
Signal Transduct Target Ther ; 8(1): 99, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882410

RESUMO

In this study, we identified that a conserved circular RNA (circRNA) DICAR, which was downregulated in diabetic mouse hearts. DICAR had an inhibitory effect on diabetic cardiomyopathy (DCM), as the spontaneous cardiac dysfunction, cardiac cell hypertrophy, and cardiac fibrosis occurred in DICAR deficiency (DICAR+/-) mice, whereas the DCM was alleviated in DICAR-overexpressed DICARTg mice. At the cellular level, we found that overexpression of DICAR inhibited, but knockdown of DICAR enhanced the diabetic cardiomyocyte pyroptosis. At the molecular level, we identified that DICAR-VCP-Med12 degradation could be the underlying molecular mechanism in DICAR-mediated effects. The synthesized DICAR junction part (DICAR-JP) exhibited a similar effect to the entire DICAR. In addition, the expression of DICAR in circulating blood cells and plasma from diabetic patients was lower than that from health controls, which was consistent with the decreased DICAR expression in diabetic hearts. DICAR and the synthesized DICAR-JP may be drug candidates for DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , RNA Circular , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Miócitos Cardíacos , Piroptose/genética , RNA Circular/genética , Fatores de Transcrição
10.
Environ Sci Pollut Res Int ; 30(16): 48248-48259, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36752923

RESUMO

The sources and distribution characteristics of three phenolic endocrine-disrupting compounds (EDCs), e.g., alkylphenols (APs) (including nonylphenols (NPs) and 4-t-octylphenol (OP)) and Bisphenol A (BPA), were investigated in the rivers of the Pearl River Delta Region (PRDR) with complex land-use types. The mean concentrations of NPs, OP, and BPA in river water including wet and dry seasons were 87, 6, and 74 ng/L in the agricultural regions (n = 10), 135, 7, and 61 ng/L in the transitional regions (n = 8), and 249, 15, and 152 ng/L in the urban regions (n = 28). Contents of NPs and BPA were high in the river sediments (ranged from 7 to 3048 ng/g and 2 to 271 ng/g, respectively). Equilibrium analysis results suggested that sediment release was not the main source of the river EDCs. Principal component analysis (PCA) showed that sewage was the major source of EDCs in the dry season, while the leaching effect of rainfall on the agricultural soils, urban roads, and commercial products was an important source in the wet season. Furthermore, the ratio of APs and total concentration of phenolic EDCs (ΣEDCs) was used to characterize the agricultural regions and urban regions in the PRDR. The ratio was less than 0.6 in the agricultural regions while the ratio was large than 0.6 in the dry season and less than 0.6 in the wet season in urban regions. BPA and NPs in transitional region and urban region had small/medium potential risk to aquatic organisms.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Rios , Água Doce , Disruptores Endócrinos/análise
11.
J Asthma ; 60(8): 1535-1544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36511625

RESUMO

OBJECTIVE: With the growing frequency of Mycoplasma pneumoniae infections linked to respiratory asthma (MP-RA), particularly in children, the quest for novel diagnostic molecular markers has become critical. We examined the link between serum immunoglobulin, inflammatory variables, vitamin A, and vitamin D levels in MP-RA patients and then found markedly diagnostic indicators. METHODS: From January 2015 to March 2020, our hospital screened 55 cases of healthy control children (HC), 53 instances of mycoplasma pneumonia infection complicated with respiratory asthma (MP-RA), and 58 cases of non-respiratory asthma children for pneumonia mycoplasma infection (MP). Serum immunoglobulins, inflammatory markers, vitamin D, and vitamin A levels were analyzed, and a predictive model including the feature chosen in the least absolute shrinkage and selection operator regression model was developed. RESULTS: Serum TNF- and IL-1b levels were greater in MP-RA children than in MP children, but 25(OH)D, IgG, and IgA levels were lower. Our findings verified the link between IgA, TNF-a, 25(OH)D, and vitamin A with MP-RA. In addition, TNF-a, IL-1b, 25(OH)D (Vit-D), IgG, and IgA were the predictors in the prediction nomogram, showing the combined influence of serum inflammation in MP-RA. C-index of 0.985 (95% CI: -1.25 to 1.68) shows high scaling ability and the model exhibits good discriminative capacity. With range validation, the high C-index value of 0.96 is still possible. CONCLUSION: TNF-a, IL-1b, 25(OH)D (Vit-D), IgG, and IgA were considered as predictors in children with MP-RA was investigated in this research.


Assuntos
Asma , Pneumonia por Mycoplasma , Criança , Humanos , Pneumonia por Mycoplasma/complicações , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/epidemiologia , Mycoplasma pneumoniae , Asma/complicações , Vitamina A , Imunoglobulina G , Imunoglobulina A , Vitamina D
12.
Comput Intell Neurosci ; 2022: 2244960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800686

RESUMO

The purpose is to study applying mathematical analysis in financial technology (FinTech) development in the era of digital economy. An Evaluation Index System (EIS) for the current situation of Chinese FinTech enterprises is established by considering the impact of the era of the digital economy on the development of FinTech. Specifically, the Principal Component Analysis (PCA) is introduced to construct the principal component prediction model based on functional data. Then, six Chinese State-owned Enterprises (SOEs) are selected. Their stock prices are predicted using the proposed model through an empirical study. The results show that selecting three principal components to evaluate the financial situations of six SOEs is reasonable. The accumulated variance values of the first three principal components of the stock's closing price and opening price are all greater than 85%. Thus, the selected three principal components can obtain the potential information of the original data. The gap between the actual value and the proposed model-predicted value of the stocks of the six SOEs is relatively small. The Root Mean Square Error (RMSE) of China National Petroleum Corporation (CNPC) is 0.105, more than 10%. The predicted values of Huadian Energy and China Shenhua are 9.4% and 8.5%, respectively, second only to CNPC. Therefore, the proposed principal component prediction model based on functional data can predict the closing price of stocks well. The accuracy is relatively high and matches well with financial data analysis. This research has important implications for the development of FinTech.


Assuntos
Tecnologia , China , Análise de Componente Principal
13.
Chem Commun (Camb) ; 58(30): 4727-4730, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35319047

RESUMO

Herein, we report the catalytic asymmetric synthesis of a unique family of axially chiral enamides in good yields with excellent enantioselectivities under mild conditions. These new axially chiral compounds feature a flexible skeleton and a high degree of rotational freedom, which raises difficulties for enantiocontrol. A mechanism model is proposed to interpret the stereoselectivity, in which both the steric difference of the ortho substituents and the π-π stacking interaction may contribute to the stereo-control.


Assuntos
Estereoisomerismo , Alquilação , Catálise
14.
Environ Sci Pollut Res Int ; 29(30): 46161-46173, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35157204

RESUMO

Two novel adsorbents of CaAl-LDHs and sodium dodecyl benzene sulfonate (SDBS) intercalated CaAl-LDHs (SDBS-CaAl-LDHs) were successfully prepared by co-precipitation. The main composition and physical properties of two samples were characterized by XRD, XPS, FT-IR, TG, and SEM. Batch adsorption experiments were conducted to study the effect of pH, adsorption time, and initial concentration of Pb2+. The results showed that the prime adsorption conditions obtained were pH of 5.2 after 60 min with the initial concentration of 300 mg g-1 for CaAl-LDHs and 350 mg g-1 for SDBS-CaAl-LDHs. At 303 K, the adsorption capacities and removal rates of CaAl-LDHs and SDBS-CaAl-LDHs were found to be 456.05 mg g-1, 91.21% and 682.26 mg g-1, 97.47%, respectively. For CaAl-LDHs, the kinetic data for Pb2+ was best fitted with pseudo-2nd-order model, and the adsorption isotherms followed Langmuir and Freundlich isotherm model. The adsorption data of SDBS-CaAl-LDHs can be best described by the pseudo-second-order kinetic and Langmuir model. The Pb2+ adsorption mechanism on SDBS-CaAl-LDHs was explored by XRD, XPS, and SEM, and the important roles of the electrostatic attraction, precipitation, complexation, and ion exchange were demonstrated. The Langmuir adsorption capacities for SDBS-CaAl-LDHs were 797.63, 828.76, and 854.29 mg g-1 at 293 k, 303 k, and 313 k, respectively. Thus, SDBS-CaAl-LDHs may be a highly economical adsorbent for the treatment of contaminated water.


Assuntos
Alumínio , Poluentes Químicos da Água , Adsorção , Alumínio/química , Hidróxido de Alumínio , Benzenossulfonatos , Cálcio , Cinética , Chumbo , Hidróxido de Magnésio , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
15.
Chem Sci ; 12(12): 4582-4587, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-34163723

RESUMO

A novel and efficient desymmetrizing asymmetric ortho-selective mono-bromination of bisphenol phosphine oxides under chiral squaramide catalysis was reported. Using this asymmetric ortho-bromination strategy, a wide range of chiral bisphenol phosphine oxides and bisphenol phosphinates were obtained with good to excellent yields (up to 92%) and enantioselectivities (up to 98.5 : 1.5 e.r.). The reaction could be scaled up, and the synthetic utility of the desired P-stereogenic compounds was proved by transformations and application in an asymmetric reaction.

16.
Environ Res ; 195: 110840, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33587946

RESUMO

Intimate coupling of visible-light photocatalysis and biodegradation (ICPB) offers potential for degrading chlorine dioxide bleaching wastewater. In this study, we reported a TiO2-coated sponge biofilm carrier with significant adhesion of TiO2 and the ability to accumulate biomass in its interior. Four mechanisms possibly acting in ICPB were tested separately: adsorption of chlorine dioxide bleaching wastewater to the carrier, photolysis, photocatalysis, and biodegradation by the biofilm inside the carrier. The carrier had an adsorption capacity of 17% and 16% for CODcr and AOX, respectively, in the wastewater. The photodegradation rate of wastewater was very low and could be ignored. Both biodegradation (AOX 30.1%, CODcr 33.8%, DOC 26.2%) and photocatalysis (AOX 65.1%, CODcr 71.2%, DOC 62.3%) possessed a certain degradation efficiency of wastewater. However, the removal rate of AOX, CODcr, and DOC in wastewater treatment by protocol ICPB reached 80.3%, 90.5%, and 86.7%. FT-IR and GC-MS analysis showed that the ICPB system had photocatalytic activity on the surface of the porous carrier in vitro, which could transform organic into small molecules for microbial utilization or complete mineralization. Moreover, the biofilm in the interior of the TiO2-coated sponge carrier could mineralize the photocatalytic products, which enhanced the removal of AOX, CODcr, and DOC by more than 15.2%, 20.0%, and 24.0%, respectively. The biofilm in the carrier of the ICPB system evolved, enriched in Proteobacteria, Chloroflexi, Bacteroidetes, and Actinobacteria, microorganisms known to play active roles in the biodegradation of papermaking wastewater.


Assuntos
Titânio , Águas Residuárias , Biodegradação Ambiental , Catálise , Compostos Clorados , Óxidos , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier
17.
PeerJ ; 7: e7938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681514

RESUMO

Tree aging is a new research area and has attracted research interest in recent years. Trees show extraordinary longevity; Platycladus orientalis L. (Cupressaceae) has a lifespan of thousands of years. Ancient trees are precious historical heritage and scientific research materials. However, tree aging and tree senescence have different definitions and are poorly understood. Since leaves are the most sensitive organ of a tree, we studied the structural response of leaves to tree age. Experiments investigating the leaf morphological structure, anatomical structure and ultrastructure were conducted in healthy P. orientalis at three different ages (ancient trees >2,000 years, 200 years < middle-aged trees <500 years, young trees <50 years) at the world's largest planted pure forest in the Mausoleum of the Yellow Emperor, Shaanxi Province, China. Interestingly, tree age did not significantly impact leaf cellular structure. Ancient P. orientalis trees in forests older than 2,000 years still have very strong vitality, and their leaves still maintained a perfect anatomical structure and ultrastructure. Our observations provide new evidence for the unique pattern of tree aging, especially healthy aging. Understanding the relationships between leaf structure and tree age will enhance the understanding of tree aging.

18.
PeerJ ; 7: e6766, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30997297

RESUMO

Platycladus orientalis L. (Cupressaceae) has a lifespan of thousands of years. Ancient trees have very high scientific, economic and cultural values. The senescence of ancient trees is a new research area but is poorly understood. Leaves are the primary and the most sensitive organ of a tree. To understand leaf structural response to tree senescence in ancient trees, experiments investigating the morphology, anatomy and ultrastructure were conducted with one-year leaves of ancient P. orientalis (ancient tree >2,000 years) at three different tree senescent levels (healthy, sub-healthy and senescent) at the world's largest planted pure forest in the Mausoleum of Yellow Emperor, Shaanxi Province, China. Observations showed that leaf structure significantly changed with the senescence of trees. The chloroplast, mitochondria, vacuole and cell wall of mesophyll cells were the most significant markers of cellular ultrastructure during tree senescence. Leaf ultrastructure clearly reflected the senescence degree of ancient trees, confirming the visual evaluation from above-ground parts of trees. Understanding the relationships between leaf structure and tree senescence can support decision makers in planning the protection of ancient trees more promptly and effectively by adopting the timely rejuvenation techniques before the whole tree irreversibly recesses.

19.
Brain Res ; 1714: 18-26, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779911

RESUMO

Brain stroke is one of the leading causes of death worldwide. We explored a potential stroke-related role for a newly found microRNA, miR-1247-3p, and one of its target genes, caspase-2, predicted by TargetScanVert. In the present study, we found that miR-1247-3p was downregulated during ischemia/reperfusion (I/R) and that LV-miR-1247-3p overexpression attenuated brain impairment induced by I/R. Similar results were observed in neuro2a (N2a) cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R). Caspase-2 was upregulated in the I/R and OGD/R model, while Z-VDVAD-FMK - the inhibitor of caspase-2-inhibited apoptosis of N2a cells induced by OGD/R. An miR-1247-3p mimic inhibited caspase-2 expression and attenuated apoptosis of N2a cells induced by OGD/R. Myocardin-related transcription factor-A (MRTF-A) overexpression upregulated miR-1247 and mature miR-1247-3p levels and attenuated apoptosis induced by OGD/R, whereas its anti-apoptotic function could be blocked by a miR-1247-3p inhibitor. Hence, we conclude that miR-1247-3p may protect cells during brain stroke. This study offers insights for the development of effective therapeutics for promoting the survival of cerebral neurons during brain I/R injury.


Assuntos
Caspase 2/metabolismo , MicroRNAs/genética , Acidente Vascular Cerebral/genética , Animais , Apoptose/genética , Caspase 2/genética , Linhagem Celular , Regulação para Baixo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Transativadores/genética , Transativadores/metabolismo
20.
Front Physiol ; 9: 1549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483143

RESUMO

Background: There is debate as to whether c-Myc predicts prognosis in colorectal cancer (CRC). In this study, we aimed to review the association between c-Myc and CRC prognosis. Methods: Pertinent studies were identified by searching electronic databases and carefully reviewing the reference lists of pertinent studies until March 2016. The summary hazard ratio (HR) and corresponding 95% confidence interval (CI) were calculated to study the association between c-Myc and CRC prognosis. Results: Eight cohort studies (including seven studies about overall survival [OS] and one study about disease free survival [DFS]) were included. The pooled HR of OS was 1.13 (95% CI: 0.66-1.95). In subgroup analysis, no significant association between c-Myc and CRC prognosis was found in the studies either from Western countries (HR: 0.87, 95% CI: 0.68-1.10) or Asian countries (HR: 1.89, 95% CI: 0.62-5.77). HRs were 0.86 (95% CI: 0.38-1.94) and 1.57 (95% CI: 0.73-3.39) for the studies using univariate analysis and multivariate analysis, respectively. HR from the studies that examined DNA level was significantly different (HR: 2.05, 95% CI: 1.22-3.46); while that about RNA level or protein level was not significantly different. Conclusion: c-Myc was not associated with CRC prognosis in this meta-analysis. However, the conclusion is preliminary and should be examined in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA