Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675949

RESUMO

In a survey of mycoviruses in Fusarium species that cause sugarcane Pokkah boeng disease, twelve Fusarium strains from three Fusarium species (F. sacchari, F. andiyazi, and F. solani) were found to contain Fusarium sacchari hypovirus 1 (FsHV1), which we reported previously. The genomes of these variants range from 13,966 to 13,983 nucleotides, with 98.6% to 99.9% nucleotide sequence identity and 98.70% to 99.9% protein sequence similarity. Phylogenetic analysis placed these FsHV1 variants within the Alphahypovirus cluster of Hypoviridae. Intriguingly, no clear correlation was found between the geographic origin and host specificity of these viral variants. Additionally, six out of the twelve variants displayed segmental deletions of 1.5 to 1.8 kilobases, suggesting the existence of defective viral dsRNA. The presence of defective viral dsRNA led to a two-thirds reduction in the dsRNA of the wild-type viral genome, yet a tenfold increase in the total viral dsRNA content. To standardize virulence across natural strains, all FsHV1 strains were transferred into a single, virus-free Fusarium recipient strain, FZ06-VF, via mycelial fusion. Strains of Fusarium carrying FsHV1 exhibited suppressed pigment synthesis, diminished microspore production, and a marked decrease in virulence. Inoculation tests revealed varying capacities among different FsHV1 variants to modulate fungal virulence, with the strain harboring the FsHV1-FSA1 showing the lowest virulence, with a disease severity index (DSI) of 3.33, and the FsHV1-FS1 the highest (DSI = 17.66). The identification of highly virulent FsHV1 variants holds promise for the development of biocontrol agents for Pokkah boeng management.


Assuntos
Micovírus , Fusarium , Genoma Viral , Filogenia , Doenças das Plantas , Fusarium/patogenicidade , Fusarium/genética , Fusarium/virologia , Virulência , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Micovírus/genética , Micovírus/classificação , Saccharum/virologia , Saccharum/microbiologia , RNA Viral/genética , Especificidade de Hospedeiro
2.
Viruses ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38400029

RESUMO

Chrysoviruses are isometric virus particles (35-50 nm in diameter) with a genome composed of double-stranded RNAs (dsRNA). These viruses belonged to the Chrysoviridae family, named after the first member isolated from Penicillium chrysogenum. Phylogenetic classification has divided the chrysoviruses into Alphachrysovirus and Betachrysovirus genera. Currently, these chrysoviruses have been found to infect many fungi, including Fusarium species, and cause changes in the phenotype and decline in the pathogenicity of the host. Thus, it is a microbial resource with great biocontrol potential against Fusarium species, causing destructive plant diseases and substantial economic losses. This review provides a comprehensive overview of three chrysovirus isolates (Fusarium graminearum virus 2 (FgV2), Fusarium graminearum virus-ch9 (FgV-ch9), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1)) reported to decline the pathogenicity of Fusarium hosts. It also summarizes the recent studies on host response regulation, host RNA interference, and chrysovirus transmission. The information provided in the review will be a reference for analyzing the interaction of Fusarium species with chrysovirus and proposing opportunities for research on the biocontrol of Fusarium diseases. Finally, we present reasons for conducting further studies on exploring the interaction between chrysoviruses and Fusarium and improving the accumulation and transmission efficiency of these chrysoviruses.


Assuntos
Micovírus , Fusarium , Vírus de RNA , Filogenia , Fungos , Doenças das Plantas/microbiologia
3.
Front Microbiol ; 11: 240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140150

RESUMO

Fusarium sacchari and Fusarium andiyazi are two devastating sugarcane pathogens that cause pokkah boeng disease (PBD) in China. RNA_Seq was conducted to identify mycoviruses in F. sacchari and F. andiyazi isolates collected from PBD symptom-showing sugarcane plants across China. Fifteen isolates with a normal, debilitated, or abnormal phenotype in colony morphology were screened out for the existence of dsRNA from 104 Fusarium isolates. By sequencing the mixed pool of dsRNA from these Fusarium isolates, a total of 26 contigs representing complete or partial genome sequences of ten mycoviruses and their strains were identified, including one virus belonging to Hypoviridae, two mitoviruses with seven strains belonging to Narnaviridae, one virus of Chrysoviridae, and one alphavirus-like virus. RT-PCR amplification with primers specific to individual mycoviruses revealed that mitoviruses were the most prevalent and the alphavirus-like virus and chrysovirus were the least prevalent. In terms of host preference, more mitoviruses were found in F. andiyazi than in F. sacchari. Fusarium sacchari hypovirus 1 with a 13.9 kb genome and a defective genome of 12.2 kb, shares 54% identity at the amino acid level to the Wuhan insect virus 14, which is an unclassified hypovirus identified from insect meta-transcriptomics. The alphavirus-like virus, Fusarium sacchari alphavirus-like virus 1 (FsALV1), seemed to hold a distinct status amid fungal alphavirus-like viruses, with the highest identity of 27% at the amino acid level to Sclerotium rolfsii alphavirus-like virus 3 and 29% to a hepevirus, Ferret hepatitis E virus. While six of the seven mitoviruses shared 72-94% identities to known mitoviruses, Fusarium andiyazi mitovirus 2 was most similar to Alternaria brassicicola mitovirus with an identity of only 49% between the two viruses. Transmission of FsALV1 and Fusarium sacchari chrysovirus 1 (FsCV1) from F. sacharri to F. commune was observed and the characterization of the four-segment dsRNA chrysovirus was performed with aid of electron microscopy and analysis of the encapsidated RNAs. These findings provide insight into the diversity and spectrum of mycoviruses in PBD pathogens and should be useful for exploring agents to control the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...