Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Analyst ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787653

RESUMO

Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 µM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.

2.
Aging (Albany NY) ; 16(9): 8031-8043, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713159

RESUMO

BACKGROUND: Stratifying patient risk and exploring the tumor microenvironment are critical endeavors in prostate cancer research, essential for advancing our understanding and management of this disease. METHODS: Single-cell sequencing data for prostate cancer were sourced from the pradcellatlas website, while bulk transcriptome data were obtained from the TCGA database. Dimensionality reduction cluster analysis was employed to investigate heterogeneity in single-cell sequencing data. Gene set enrichment analysis, utilizing GO and KEGG pathways, was conducted to explore functional aspects. Weighted gene coexpression network analysis (WGCNA) identified key gene modules. Prognostic models were developed using Cox regression and LASSO regression techniques, implemented in R software. Validation of key gene expression levels was performed via PCR assays. RESULTS: Through integrative analysis of single-cell and bulk transcriptome data, key genes implicated in prostate cancer pathogenesis were identified. A prognostic model focused on sphingolipid metabolism (SRSR) was constructed, comprising five genes: "FUS," "MARK3," "CHTOP," "ILF3," and "ARIH2." This model effectively stratified patients into high-risk and low-risk groups, with the high-risk cohort exhibiting significantly poorer prognoses. Furthermore, distinct differences in the immune microenvironment were observed between these groups. Validation of key gene expression, exemplified by ILF3, was confirmed through PCR analysis. CONCLUSION: This study contributes to our understanding of the role of sphingolipid metabolism in prostate cancer diagnosis and treatment. The identified prognostic model holds promise for improving risk stratification and patient outcomes in clinical settings.


Assuntos
Neoplasias da Próstata , Análise de Célula Única , Esfingolipídeos , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Masculino , Prognóstico , Esfingolipídeos/metabolismo , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
3.
Phytochem Anal ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740517

RESUMO

INTRODUCTION: Sulfur-fumigation of Paeoniae Radix Alba (PRA) could induce the chemical transformation of its bioactive component paeoniflorin into a sulfur-containing derivative paeoniflorin sulfite, and thus alter the quality, bioactivities, pharmacokinetics, and toxicities of PRA. However, how sulfur-fumigated PRA (S-PRA) affects the quality of PRA-containing complex preparations has not been intensively evaluated. OBJECTIVES: We intend to evaluate the influence of S-PRA on the overall quality of three kinds of Si-Wu-Tang (SWT) formulations, i.e., decoction (SWT-D), granule (SWT-G), and mixture (SWT-M). MATERIAL AND METHODS: An UPLC-DAD multi-components quantification method was used to compare the transfer rates of paeoniflorin sulfite and other 10 bioactive components between S-PRA-containing and NS-PRA-containing SWT formulations. An UPLC-QTOF-MS/MS-based target metabolomics approach was applied to explore the differential sulfur-containing derivatives in S-PRA-containing SWT formulations. RESULTS: The transfer rates of paeoniflorin sulfite in three S-PRA-containing SWT formulations were all higher than 100%. Moreover, S-PRA also increased the transfer rate of 5-hydroxymethylfurfural, 1,2,3,4,6-O-pentagalloylglucose, whereas decreased that of paeoniflorin, albiflorin, and ferulic acid in three SWT formulations. Six pinane monoterpene glucoside sulfites originally identified in S-PRA, were also detectable in three S-PRA-containing SWT formulations. In addition, seven phenolic acid sulfites including (3Z)-6-sulfite-ligustilide, (3E)-6-sulfite-ligustilide, 6,8-disulfite-ligustilide, ferulic acid sulfite, neochlorogenic acid sulfite, chlorogenic acid sulfite, and angelicide sulfite (or isomer) were newly identified in these three S-PRA-containing formulations. CONCLUSION: S-PRA could differentially affect the transfer rate of paeoniflorin sulfite and other bioactive components during the preparation of three SWT formulations and subsequently the overall quality thereof.

4.
NPJ Prim Care Respir Med ; 34(1): 12, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796510

RESUMO

Studies exploring the association between obstructive sleep apnoea syndrome (OSA) and gastrointestinal diseases (GID) are important for enhancing clinical outcomes. This study aimed to systematically assess the association between these two diseases. Adhering to PRISMA guidelines, a comprehensive literature search was conducted across databases including PubMed, Web of Science, Willey Library, Cochrane Library and Scopus. This search focused on English literature published up to January 2024. Literature screening, quality assessment (using the NOS scale) and data extraction were performed by two independent researchers. Statistical analyses were performed using the meta-package of the R.4.2.2 software. An initial screening of 2178 papers was conducted and 11 studies were included. Meta-analysis results showed a significant association between OSA and GID (p < 0.01). Subgroup analyses further indicated a stronger association between OSA and GID in Asian populations compared to Europe and the United States. In addition, both benign and malignant GID were significantly associated with OSA, with a pronounced association for malignant GID than for benign GID. The results of publication bias analysis revealed no significant bias (Begg's test p = 0.45, Egger's test p = 0.60). This study uncovers a notable association between OSA and GID, especially in Asian populations, suggesting that clinicians should consider the potential connection between these two diseases during diagnosis and treatment. However, due to the heterogeneity and limitations of the study, these conclusions need to be further validated through more comprehensive research.


Assuntos
Gastroenteropatias , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/complicações , Gastroenteropatias/epidemiologia
5.
Angew Chem Int Ed Engl ; : e202407491, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735853

RESUMO

Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity.This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K+ ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m2 with long-term durability (20,000s), which is almost 400% higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.

7.
ACS Nano ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814908

RESUMO

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

8.
Aging (Albany NY) ; 162024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38795388

RESUMO

OBJECTIVE: This study aimed to investigate the impact of Dickkopf 2 (DKK2) on the progression of oral squamous cell carcinoma (OSCC) and explore its role in the PI3K/AKT signaling transduction pathway. MATERIALS AND METHODS: The study initially examined the expression of the DKK2 gene in OSCC tissues and normal tissues. Simultaneously, the expression of DKK2 in HOK cells and OSCC cells was verified, and changes in DKK2 expression under hypoxic conditions were detected. DKK2 overexpression and knockdown were performed in SCC-15 and CAL-27 cells. Subsequently, the effects of DKK2 on the proliferation, migration and invasion of OSCC were detected. Western blotting was employed to detect the expression of key proteins in the DKK2/PI3K/AKT signaling axis before and after transfection, and further explore the relevant molecular mechanisms. RESULTS: Compared to normal tissues, DKK2 expression was elevated in OSCC tissues. The expression of DKK2 in the SCC-15 and CAL-27 cell lines was higher than that in HOK cells, and hypoxic conditions could promote DKK2 expression. DKK2 overexpression promoted cell proliferation, migration, and invasion, while DKK2 knockdown inhibited these processes. DKK2 overexpression activated the PI3K/AKT pathway, while DKK2 knockdown suppressed this pathway. CONCLUSION: This study suggests that hypoxic conditions enhance the expression of DKK2 in OSCC. DKK2 regulates the proliferation, migration, and invasion of OSCC through the PI3K/AKT signaling pathway.

9.
Acta Pharmacol Sin ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789496

RESUMO

Renal tubular epithelial cell senescence plays a critical role in promoting and accelerating kidney aging and age-related renal fibrosis. Senescent cells not only lose their self-repair ability, but also can transform into senescence-associated secretory phenotype (SASP) to trigger inflammation and fibrogenesis. Recent studies show that mitochondrial dysfunction is critical for renal tubular cell senescence and kidney aging, and calcium overload and abnormal calcium-dependent kinase activities are involved in mitochondrial dysfunction-associated senescence. In this study we investigated the role of mitochondrial calcium overload and mitochondrial calcium uniporter (MCU) in kidney aging. By comparing the kidney of 2- and 24-month-old mice, we found calcium overload in renal tubular cells of aged kidney, accompanied by significantly elevated expression of MCU. In human proximal renal tubular cell line HK-2, pretreatment with MCU agonist spermine (10 µM) significantly increased mitochondrial calcium accumulation, and induced the production of reactive oxygen species (ROS), leading to renal tubular cell senescence and age-related kidney fibrosis. On the contrary, pretreatment with MCU antagonist RU360 (10 µM) or calcium chelator BAPTA-AM (10 µM) diminished D-gal-induced ROS generation, restored mitochondrial homeostasis, retarded cell senescence, and protected against kidney aging in HK-2 cells. In a D-gal-induced accelerated aging mice model, administration of BAPTA (100 µg/kg. i.p.) every other day for 8 weeks significantly alleviated renal tubuarl cell senescence and fibrosis. We conclude that MCU plays a key role in promoting renal tubular cell senescence and kidney aging. Targeting inhibition on MCU provides a new insight into the therapeutic strategy against kidney aging.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38714595

RESUMO

Providencia genus is known to harbor certain opportunistic pathogens capable of causing human infections. Here, we report two strains of multidrug-resistant bacteria initially identified as Providencia rettgeri by mass spectrometry, but genome analysis revealed their ANI (79.84-84.20%) and dDDH (21.1-25.6%) values to fall below the accepted species threshold for known Providencia species. We therefore propose that these isolates be recognized as a novel species, Providencia xianensis sp. nov. Alarmingly, both strains, isolated from locations far apart, exhibited resistance to last-resort antibiotics, indicating their possible wide distribution, underscoring the urgency for immediate attention and enhanced surveillance for this emerging multidrug-resistant pathogen.

11.
Genes Dis ; 11(4): 100994, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560504

RESUMO

The tumor suppressor p53 is the most common mutated gene in cancer, with the R175H as the most frequent p53 missense mutant. However, there are currently no approved targeted therapies or immunotherapies against mutant p53. Here, we characterized and investigated a monoclonal antibody (mAb) that recognizes the mutant p53-R175H for its affinity, specificity, and activity against tumor cells in vitro. We then delivered DNA plasmids expressing the anti-R175H mAb or a bispecific antibody (BsAb) into mice to evaluate their therapeutic effects. Our results showed that the anti-R175H mAb specifically bound to the p53-R175H antigen with a high affinity and recognized the human mutant p53-R175H antigen expressed on HEK293T or MC38 cells, with no cross-reactivity with wild-type p53. In cultured cells, the anti-R175H mAb showed higher cytotoxicity than the control but did not induce antibody-dependent cellular cytotoxicity. We made a recombinant MC38 mouse cell line (MC38-p53-R175H) that overexpressed the human p53-R175H after knocking out the endogenous mutant p53 alleles. In vivo, administration of the anti-R175H mAb plasmid elicited a robust anti-tumor effect against MC38-p53-R175H in mice. The administration of the anti-R175H BsAb plasmid showed no therapeutic effects, yet potent anti-tumor activity was observed in combination with the anti-PD-1 antibody. These results indicate that targeting specific mutant epitopes using DNA-delivered mAbs or BsAbs presents a form of improved natural immunity derived from tumor-infiltrating B cells and plasma cells against intracellular tumor antigens.

12.
J Am Chem Soc ; 146(15): 10498-10507, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38590084

RESUMO

Metastable compounds have greatly expanded the synthesizable compositions of solid-state materials and have attracted enormous amounts of attention in recent years. Especially, mechanochemically enabled metastable materials synthesis has been very successful in realizing cation-disordered materials with highly simple crystal structures, such as rock salts. Application of the same strategy for other structural types, especially for non-close-packed structures, is peculiarly underexplored. Niobium tungsten oxides (NbWOs), a class of materials that have been under the spotlight because of their diverse structural varieties and promising electrochemical and thermoelectric properties, are ideally suited to fill such a knowledge gap. In this work, we develop a new series of metastable NbWOs and realize one with a fully cation-disordered structure. Furthermore, we find that metastable NbWOs transform to a cation-disordered cubic structure when applied as a Li-ion battery anode, highlighting an intriguing non-close-packed-close-packed conversion process, as evidenced in various physicochemical characterizations, in terms of diffraction, electronic, and vibrational structures. Finally, by comparing the cation-disordered NbWO with other trending cation-disordered oxides, we raise a few key structural features for cation disorder and suggest a few possible research opportunities for this field.

13.
Redox Rep ; 29(1): 2333096, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38623993

RESUMO

OBJECTIVES: The study aimed to assess the role of Astaxanthin (ATX) in palmitic acid(PA) -induced bone loss in Ovariectomized(OVX) rats. METHODS: In the OVX rat model, we observed that PA affects bone metabolism and accelerates bone loss. Additionally, treatment with ATX was able to suppress the deleterious effects of PA and a simultaneous decrease in serum MDA levels and an increase in SOD was observed. RESULTS: In addition, rats treated with ATX were observed to have significantly increased bone mass and elevated activity of SIRT1 and SOD2 in bone tissue. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclast differentiation, the ATX intervention was able to significantly restore the restriction of osteogenic differentiation and the up-regulation of osteoclast differentiation with PA therapy. Furthermore, we confirm that PA damage to cells is caused by increased oxidative stress, and that ATX can target and modulate the activity of SIRT1 to regulate the levels of oxidative stress in cells. CONCLUSION: Summarizing, ATX may inhibit PA-induced bone loss through its antioxidant properties via the SIRT1 signaling pathway.


Assuntos
Osteoporose , Ratos , Animais , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteogênese , Ácido Palmítico/toxicidade , Sirtuína 1 , Diferenciação Celular , Estresse Oxidativo , Xantofilas
14.
Nat Commun ; 15(1): 2852, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605028

RESUMO

Voids-the nothingness-broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.

15.
Food Chem ; 448: 139112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569404

RESUMO

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Assuntos
Fumigação , Ginsenosídeos , Panax , Controle de Qualidade , Enxofre , Ginsenosídeos/química , Ginsenosídeos/análise , Panax/química , Enxofre/química , Sulfitos/química , Sulfitos/análise , Metais/química , Metais/análise , Extratos Vegetais/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-38661542

RESUMO

In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 µm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.

17.
J Biomater Appl ; 38(10): 1073-1086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569649

RESUMO

Recently, more and more studies have shown that guanylate cyclase, an enzyme that synthesizes cyclic guanosine monophosphate (cGMP), plays an important role in bone metabolism. Vericiguat (VIT), a novel oral soluble guanylate cyclase stimulator, directly generates cyclic guanosine monophosphate and reduce the death incidence from cardio-vascular causes or hospitalization. Recent studies have shown beneficial effects of VIT in animal models of osteoporosis, but very little is currently known about the effects of VIT on bone defects in the osteoporotic states. Therefore, in this study, ß-tricalcium phosphate (ß-TCP) was used as a carrier to explore the effect of local VIT administration on the repair of femoral metaphyseal bone defects in ovariectomized (OVX) rats. When MC3T3-E1 was cultured in the presence of H2H2, VIT, similar to Melatonin (MT), therapy could increase the matrix mineralization and ALP, SOD2, SIRT1, and OPG expression, reduce ROS and Mito SOX production, RANKL expression, Promote the recovery of mitochondrial membrane potential. In the OVX rat model, VIT increases the osteogenic effect of ß-TCP and better results were obtained at a dose of 5 mg. Local use of VIT can inhibit increased OC, BMP2 and RUNX2 expressions in bone tissue, while decreased SOST and TRAP expressions by RT-PCR and immunohistochemistry. Thereby, VIT stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.


Assuntos
Fosfatos de Cálcio , Osteogênese , Ratos Sprague-Dawley , Animais , Osteogênese/efeitos dos fármacos , Feminino , Camundongos , Fosfatos de Cálcio/química , Ratos , Ovariectomia , Linhagem Celular , Osteoporose/tratamento farmacológico , Regeneração Óssea/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Fêmur/metabolismo
18.
Chin Med ; 19(1): 58, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584284

RESUMO

BACKGROUND: Danggui Sini decoction (DSD), a traditional Chinese medicine formula, has the function of nourishing blood, warming meridians, and unblocking collaterals. Our clinical and animal studies had shown that DSD can effectively protect against oxaliplatin (OXA)-induced peripheral neuropathy (OIPN), but the detailed mechanisms remain uncertain. Multiple studies have confirmed that gut microbiota plays a crucial role in the development of OIPN. In this study, the potential mechanism of protective effect of DSD against OIPN by regulating gut microbiota was investigated. METHODS: The neuroprotective effects of DSD against OIPN were examined on a rat model of OIPN by determining mechanical allodynia, biological features of dorsal root ganglia (DRG) as well as proinflammatory indicators. Gut microbiota dysbiosis was characterized using 16S rDNA gene sequencing and metabolism disorders were evaluated using untargeted and targeted metabolomics. Moreover the gut microbiota mediated mechanisms were validated by antibiotic intervention and fecal microbiota transplantation. RESULTS: DSD treatment significantly alleviated OIPN symptoms by relieving mechanical allodynia, preserving DRG integrity and reducing proinflammatory indicators lipopolysaccharide (LPS), IL-6 and TNF-α. Besides, DSD restored OXA induced intestinal barrier disruption, gut microbiota dysbiosis as well as systemic metabolic disorders. Correlation analysis revealed that DSD increased bacterial genera such as Faecalibaculum, Allobaculum, Dubosiella and Rhodospirillales_unclassified were closely associated with neuroinflammation related metabolites, including positively with short-chain fatty acids (SCFAs) and sphingomyelin (d18:1/16:0), and negatively with pi-methylimidazoleacetic acid, L-glutamine and homovanillic acid. Meanwhile, antibiotic intervention apparently relieved OIPN symptoms. Furthermore, fecal microbiota transplantation further confirmed the mediated effects of gut microbiota. CONCLUSION: DSD alleviates OIPN by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder.

19.
Comput Biol Med ; 172: 108262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479196

RESUMO

Given the increasing aging population and rising living standards in China, developing an accurate and straightforward thermoregulation model for the elderly has become increasingly essential. To address this need, an existing one-segment four-node thermoregulation model for the young was selected as the base model. This study developed the base model considering age-related physical and physiological changes to predict mean skin temperatures of the elderly. Measured data for model optimization were collected from 24 representative healthy Chinese elderly individuals (average age: 67 years). The subjects underwent temperature step changes between neutral and warm conditions with a temperature range of 25-34 °C. The model's demographic representation was first validated by comparing the subjects' physical characteristics with Chinese census data. Secondly, sensitivity analysis was performed to investigate the influences of passive system parameters on skin and core temperatures, and adjustments were implemented using measurement or literature data specific to the Chinese elderly. Thirdly, the active system was modified by resetting the body temperature set points. The active parameters to control thermoregulation activities were further optimized using the TPE (Tree-structured Parzen Estimator) hyperparameter tuning method. The model's accuracy was further verified using independent experimental data for a temperature range of 18-34 °C for Chinese elderly. By comprehensively considering age-induced thermal response changes, the proposed model has potential applications in designing and optimizing thermal management systems in buildings, as well as informing energy-efficient strategies tailored to the specific needs of the Chinese elderly population.


Assuntos
Temperatura Alta , Modelos Biológicos , Humanos , Idoso , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Temperatura Cutânea , China
20.
Clin Rheumatol ; 43(5): 1513-1520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436771

RESUMO

OBJECTIVE: Due to the complexity of drug-induced lupus (DIL) pathogenesis, more susceptibility factors need to be discovered. FAM210B is a new mitochondrial protein whose function has not been fully elucidated. This study will explore whether there is a correlation between FAM210B and the risk of DIL. METHODS: At first, we extracted three FAM210B genetic variants from the GTEx database (n = 948), and extracted their corresponding genome-wide association study (GWAS) summary statistics from DIL (101 DIL cases and 218691 controls). Then, we performed a Mendelian randomization (MR) study to evaluate the causal association of the expression of FAM210B with DIL using inverse-variance weighted (IVW), the weighted median, MR-Egger, and MR-PRESSO test. RESULTS: We successfully extracted three FAM210B single-nucleotide polymorphisms (SNPs) (rs116032784, rs34361943 and rs33923703) from the GTEx_Analysis_v8_eQTL data that can reduce FAM210B expression. The results of the MR analysis showed that genetically reduced expression of FAM210B was significantly associated with increased risk of DIL in European ancestry based on the IVW method (ß = 1.037, p = 0.001, odds ratio [OR] = 2.821, 95% confidence interval [CI]:1.495-5.322). CONCLUSION: MR analysis showed a causal relationship between FAM210B expression and the risk of DIL disease. Our results suggested that FAM210B may be a marker that can mark susceptibility of DIL in the future. It provides evidence for the study of DIL, but its specific mechanism of action in DIL needs to be further studied. Key Points •This is the first MR analysis to examine the association between FAM210B and DIL. •The findings of this study suggested that reduced FAM210B expression is associated with the increased risk of DIL. •FAM210B may be a marker that can mark susceptibility of DIL in the future.


Assuntos
Proteínas de Membrana , Análise da Randomização Mendeliana , Proteínas Mitocondriais , Humanos , Causalidade , Bases de Dados Factuais , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...