Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14813, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908221

RESUMO

Huanghuazhan (HHZ) and 9,311 are two elite rice cultivars in China. They have achieved high yield through quite different mechanisms. One of the major features that gives high yield capacity to 9,311 is its strong early vigor, i.e., faster establishment of its seedling as well as its better growth in its early stages. To understand the mechanistic basis of early vigor in 9,311, as compared to HHZ the cultivar, we have examined, under controlled environmental conditions, different morphological and physiological traits that may contribute to its early vigor. Our results show that the fresh weight of the seeds, at germination, not only determined the seedling biomass at 10 days after germination (DAG), but was also responsible for ~ 80% of variations in plant biomass between the two cultivars even up to 30 DAG. Furthermore, the 9,311 cultivar had a larger root system, which led to its higher nitrogen uptake capacity. Other noteworthy observations about 9,311 being a better cultivar than HHZ are: (i) Ten out of 15 genes involved in nitrogen metabolism were much more highly expressed in its roots; (ii) it had a higher water uptake rate, promoting better root-to-shoot nitrogen transfer; and (iii) consistent with the above, it had higher leaf photosynthetic rate and stomatal conductance. All of the above identified features explain, to a large extent, why the 9,311, as compared to HHZ, exhibits much more vigorous early growth.


Assuntos
Oryza/anatomia & histologia , Oryza/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/metabolismo , Plântula/fisiologia
2.
PLoS One ; 12(3): e0172515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278154

RESUMO

To develop superior rice varieties with improved yield in most rainfed areas of Asia/Africa, we started an introgression-breeding program for simultaneously improving yield and tolerances of multiple abiotic stresses. Using eight BC1 populations derived from a widely adaptable recipient and eight donors plus three rounds of phenotypic selection, we developed 496 introgression lines (ILs) with significantly higher yield under drought, salt and/or non-stress conditions in 5 years. Six new varieties were released in the Philippines and Pakistan and many more are being evaluated in multi-location yield trials for releasing in several countries. Marker-facilitated genetic characterization revealed three interesting aspects of the breeding procedure: (1) the donor introgression pattern in specific BC populations was characteristic; (2) introgression frequency in different genomic regions varied considerably, resulting primarily from strong selection for the target traits; and (3) significantly lower heterozygosity was observed in BC progenies selected for drought and salinity tolerance. Applying strong phenotypic selection under abiotic stresses in early segregating generations has major advantages for not only improving multiple abiotic stress tolerance but also achieving quicker homozygosity in early generations. This breeding procedure can be easily adopted by small breeding programs in developing countries to develop high-yielding varieties tolerant of abiotic stresses. The large set of trait-specific ILs can be used for genetic mapping of genes/QTL that affect target and non-target traits and for efficient varietal development by designed QTL pyramiding and genomics-based recurrent selection in our Green Super Rice breeding technology.


Assuntos
Adaptação Fisiológica/genética , Marcadores Genéticos/genética , Variação Genética/genética , Oryza/genética , Locos de Características Quantitativas , Tolerância ao Sal/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Secas , Oryza/crescimento & desenvolvimento , Fenótipo
3.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 5): o1434, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22590316

RESUMO

The complete mol-ecule of the title compound, C(28)H(24)N(6), is generated by inversion symmetry with the inversion centre located at the mid-point of the central C-C bond of the butanediyl unit. The benzimidazole and pyridine rings are almost coplanar, the dihedral angle between their mean planes being 6.86 (11)°.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...