Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Front Plant Sci ; 15: 1367645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595768

RESUMO

In Rosaceae, the replacement of the traditional four-subfamily division (Amygdaloideae or Prunoideae, Maloideae, Rosoideae, and Spiraeoideae) by the three-subfamily division (Dryadoideae, Rosoideae, and Amygdaloideae), the circumscription, systematic position, and phylogeny of genera in Maleae need to be reconsidered. The study aimed to circumscribe Maleae, pinpoint its systematic position, and evaluate the status of all generally accepted genera in the tribe using complete chloroplast genome data. Results indicated that Maleae consisted of pome-bearing genera that belonged to Maloideae as well as four genera (Gillenia, Kageneckia, Lindleya, and Vauquelinia) that were formerly considered to be outside Maloideae. The tribe could be subdivided into four subtribes: Gilleniinae (Gillenia), Lindleyinae (Kageneckia and Lindleya), Vaugueliniinae (Vauquelinia), and Malinae (all other genera; the core Maleae). Among the 36 recognized genera, Aria, Docyniopsis, Chamaemespilus, and Mespilus were not considered distinct and more research is needed to determine the taxonomic status of Rhaphiolepis from Eriobotrya. Within the core Maleae, five groups were revealed, whereas Sorbus L. was split as its members belonged to different groups.

2.
Genes (Basel) ; 15(3)2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540352

RESUMO

Maize(Zea mays. L) is a globally important crop, and understanding its genetic diversity is crucial for plant breeding phylogenetic analyses and comparative genetics. While nuclear markers have been extensively used for mapping agriculturally important genes, they are limited in recognizing characteristics, such as cytoplasmic male sterility and reciprocal cross hybrids. In this study, we performed next-generation sequencing of 176samples, and the maize cultivars represented five distinct groups. A total of 89 single nucleotide polymorphisms (SNPs) and 11 insertion/deletion polymorphisms (InDels) were identified. To enable high-throughput detection, we successfully amplified and confirmed 49 SNP and InDel markers, which were defined as a Varietal Chloroplast Panel (VCP) using the Kompetitive Allele Specific PCR (KASP). The specific markers provided a valuable tool for identifying chloroplast groups. The verification experiment, focusing on the identification of reciprocal cross hybrids and cytoplasmic male sterility hybrids, demonstrated the significant advantages of VCP markers in maternal inheritance characterization. Furthermore, only a small subset of these markers is needed to provide useful information, showcasing the effectiveness of these markers in elucidating the artificial selection process of elite maize lines.


Assuntos
Genoma de Cloroplastos , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Mapeamento Cromossômico , Marcadores Genéticos/genética , Zea mays/genética , Genótipo , Filogenia , Genoma de Planta/genética , Melhoramento Vegetal
3.
Front Immunol ; 15: 1286973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361940

RESUMO

Background: The prognosis of anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+DM) is poor and heterogeneous. Rapidly progressive interstitial lung disease (RP-ILD) is these patients' leading cause of death. We sought to develop prediction models for RP-ILD risk in anti-MDA5+DM patients. Methods: Patients with anti-MDA5+DM were enrolled in two cohorts: 170 patients from the southern region of Jiangsu province (discovery cohort) and 85 patients from the northern region of Jiangsu province (validation cohort). Cox proportional hazards models were used to identify risk factors of RP-ILD. RP-ILD risk prediction models were developed and validated by testing every independent prognostic risk factor derived from the Cox model. Results: There are no significant differences in baseline clinical parameters and prognosis between discovery and validation cohorts. Among all 255 anti-MDA5+DM patients, with a median follow-up of 12 months, the incidence of RP-ILD was 36.86%. Using the discovery cohort, four variables were included in the final risk prediction model for RP-ILD: C-reactive protein (CRP) levels, anti-Ro52 antibody positivity, short disease duration, and male sex. A point scoring system was used to classify anti-MDA5+DM patients into moderate, high, and very high risk of RP-ILD. After one-year follow-up, the incidence of RP-ILD in the very high risk group was 71.3% and 85.71%, significantly higher than those in the high-risk group (35.19%, 41.69%) and moderate-risk group (9.54%, 6.67%) in both cohorts. Conclusions: The CROSS model is an easy-to-use prediction classification system for RP-ILD risk in anti-MDA5+DM patients. It has great application prospect in disease management.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Masculino , Dermatomiosite/complicações , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Helicase IFIH1 Induzida por Interferon , Estudos Retrospectivos , Autoanticorpos
4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958595

RESUMO

Cherries (Prunus Subgenus Cerasus) have economic value and ecological significance, yet their phylogeny, geographic origin, timing, and dispersal patterns remain challenging to understand. To fill this gap, we conducted a comprehensive analysis of the complete chloroplast genomes of 54 subg. Cerasus individuals, along with 36 additional genomes from the NCBI database, resulting in a total of 90 genomes for comparative analysis. The chloroplast genomes of subg. Cerasus exhibited varying sizes and consisted of 129 genes, including protein-coding, transfer RNA, and ribosomIal RNA genes. Genomic variation was investigated through InDels and SNPs, showcasing distribution patterns and impact levels. A comparative analysis of chloroplast genome boundaries highlighted variations in inverted repeat (IR) regions among Cerasus and other Prunus species. Phylogeny based on whole-chloroplast genome sequences supported the division of Prunus into three subgenera, I subg. Padus, II subg. Prunus and III subg. Cerasus. The subg. Cerasus was subdivided into seven lineages (IIIa to IIIg), which matched roughly to taxonomic sections. The subg. Padus first diverged 51.42 Mya, followed by the separation of subg. Cerasus from subg. Prunus 39.27 Mya. The subg. Cerasus started diversification at 15.01 Mya, coinciding with geological and climatic changes, including the uplift of the Qinghai-Tibet Plateau and global cooling. The Himalayans were the refuge of cherries, from which a few species reached Europe through westward migration and another species reached North America through northeastward migration. The mainstage of cherry evolution was on the Qing-Tibet Plateau and later East China and Japan as well. These findings strengthen our understanding of the evolution of cherry and provide valuable insights into the conservation and sustainable utilization of cherry's genetic resources.


Assuntos
Genoma de Cloroplastos , Prunus avium , Prunus , Humanos , Prunus avium/genética , Filogenia , Prunus/genética , Tibet
5.
Forensic Sci Int ; 350: 111786, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481907

RESUMO

Determination of the personal identity of victims is particularly important for the settlement of criminal cases. Unfortunately, useful information for identification is not always available. We here propose that the particles (pollens) of some plants with specific geographical distributions extracted from human lung tissues contribute to further determining the provenance or long-term residence of unknown victims, thereby considerably narrowing the search scope of the victims. We collected lung tissues from 155 victims with diverse causes of death, extracted DNA from lung tissues, sequenced the DNA fragments of plants on the Illumina Hiseq platform, and barcoded the plant species using phylogenetic methods. Finally, 108 unique plant sequences were detected in 55 samples and identified to belong to 36 species in 32 genera of 29 families. These plants were predominantly insect-pollinated crops and ornamental plants. No significant difference was observed between male and female samples, between urban and rural samples, or among samples of different ages and different sample sizes. There were 16 samples with 21 wild plant species. The original sources of 15 samples were overlapped with the distribution regions of detected plants; 2 samples narrowed the original sources to 2 provinces, which were quite coincident with their source places; 1 sample had no overlapping with its victim source region. Although plant information was only found in one-third of the samples, we further demonstrated the great potential of plant eDNA in identifying the source of unnamed corpses in a real-world case. We used plant eDNA from lung tissues to explore the provenance of an unknown female corpse found in Beijing. The source place of this victim was narrowed to Guangdong and Guangxi provinces, and finally, we confirmed her true identity in the list of missing persons in Guangxi Province. In the presence of a well-covered local reference library, the plant species detected in the lungs can be accurately identified. In difficult criminal cases where physical evidence is relatively weak, plant DNA information may provide new clues. In conclusion, the plant particles trapped in the lungs are promising to help forensic experts narrow the search scope for the identity of unknown victims.


Assuntos
Produtos Agrícolas , DNA Ambiental , Humanos , Feminino , DNA de Plantas/genética , Filogenia , China , Análise de Sequência de DNA , Cadáver , Produtos Agrícolas/genética
6.
Genes (Basel) ; 14(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36833316

RESUMO

The flowering cherries (genus Prunus, subgenus Cerasus) are popular ornamental trees in China, Japan, Korea, and elsewhere. Prunus campanulata Maxim. is an important species of flowering cherry native to Southern China, which is also distributed in Taiwan, the Ryukyu Islands of Japan, and Vietnam. It produces bell-shaped flowers with colors ranging from bright pink to crimson during the Chinese Spring Festival from January to March each year. We selected the P. campanulata cultivar "Lianmeiren", with only 0.54% of heterozygosity, as the focus of this study, and generated a high-quality chromosome-scale genome assembly of P. campanulata by combining Pacific Biosciences (PacBio) single-molecule sequencing, 10× Genomics sequencing, and high-throughput chromosome conformation capture (Hi-C) technology. We first assembled a 300.48 Mb genome assembly with a contig N50 length of 2.02 Mb. In total, 28,319 protein-coding genes were predicted from the genome, 95.8% of which were functionally annotated. Phylogenetic analyses indicated that P. campanulata diverged from a common ancestor of cherry approximately 15.1 million years ago. Comparative genomic analyses showed that the expanded gene families were significantly involved in ribosome biogenesis, diterpenoid biosynthesis, flavonoid biosynthesis, and circadian rhythm. Furthermore, we identified 171 MYB genes from the P. campanulata genome. Based on the RNA-seq of five organs at three flowering stages, expression analyses revealed that the majority of the MYB genes exhibited tissue-specific expression patterns, and some genes were identified as being associated with anthocyanin accumulation. This reference sequence is an important resource for further studies of floral morphology and phenology, and comparative genomics of the subgenera Cerasus and Prunus.


Assuntos
Prunus avium , Prunus , Antocianinas , Prunus/genética , Filogenia , Genoma , Cromossomos , Prunus avium/genética
7.
J Rheumatol ; 50(2): 219-226, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35705235

RESUMO

OBJECTIVE: Interstitial lung disease (ILD) is a common extramuscular complication contributing to significant morbidity and mortality in patients with dermatomyositis (DM) who are positive for antimelanoma differentiation-associated gene 5 antibody (anti-MDA5+). We conducted this study to investigate the association of anti-Ro52 antibodies with clinical characteristics and prognosis in patients with anti-MDA5+ DM. METHODS: We assessed a cohort of 246 patients with anti-MDA5+ DM. To calculate hazard ratios and 95% CIs for rapidly progressive ILD (RP-ILD) and death while controlling for potential confounders, variables selected by univariate Cox regression analysis were included in a multivariate Cox regression model with the stepwise forward-selection method. A 2-tailed analysis with P < 0.05 was considered to be statistically significant. RESULTS: A total of 246 patients with anti-MDA5+ DM were enrolled; 70 patients were male, and the patient group had an average age of 53.1 (12.4) years. Anti-Ro52 was present in 64.2% (158/246) patients. Patients with anti-MDA5+ DM who were positive for anti-Ro52 had a higher rate of RP-ILD (log-rank P < 0.001) and a higher mortality rate (log-rank P = 0.01). For patients with anti-MDA5+ DM who were positive for anti-Ro52, those with a short disease course and high inflammation were at increased risk of RP-ILD and death. The appearance of active rash was an independent protective factor of death. CONCLUSION: Anti-Ro52 antibodies were highly prevalent in patients with anti-MDA5+ DM, and their coexistence correlated with a higher rate of RP-ILD and mortality. Patients with a short disease course, with increased inflammation, and without rash were more likely to have a poor prognosis.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Dermatomiosite/complicações , Autoanticorpos , Helicase IFIH1 Induzida por Interferon , Prognóstico , Progressão da Doença , Doenças Pulmonares Intersticiais/etiologia , Inflamação/complicações , Estudos Retrospectivos
8.
Rheumatology (Oxford) ; 62(3): 1216-1226, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961045

RESUMO

OBJECTIVES: Anti-melanoma differentiation-associated gene 5 positive (anti-MDA5+) DM has a close relationship with rapidly progressive interstitial lung disease (RPILD) and is associated with high mortality. However, data regarding the time-dependent risk of RPILD and deaths during disease progression are limited. We conducted this study to investigate whether the risk of RPILD and death were time-dependent or not in anti-MDA5+ DM. METHODS: We assessed a cohort of 272 patients with anti-MDA5+ DM. The clinical characteristics of patients with anti-MDA5+ were collected, and COX regression was used to analyse independent risk factors for RPILD and death. We also described changes in risk of RPILD and death over time and their potential clinical implications. RESULTS: There were 272 anti-MDA5+ DM patients enrolled in this study. According to the multivariate cox regression analysis, short disease course, high CRP level, anti-Ro52 positive and anti-MDA5 titre (++∼+++) were independent risk factors of RPILD. High creatine kinase level, high CRP level and RPILD were independent risk factors for death, and >90% RPILD and 84% mortality occurred in the first 6 months after disease onset. Notably, the first 3 months is a particularly high-risk period, with 50% of RPILD and 46% of deaths occurring. Hazards regarding RPILD and mortality diminished over time during a median follow-up of 12 months. CONCLUSION: These results suggest significant, time-dependent changes in RPILD and mortality risk in anti-MDA5+ DM patients, providing a cut-off time window to estimate disease progression and poor prognosis.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Estudos de Coortes , Helicase IFIH1 Induzida por Interferon , Dermatomiosite/complicações , Autoanticorpos , Doenças Pulmonares Intersticiais/etiologia , Progressão da Doença , China , Estudos Retrospectivos , Prognóstico
9.
Imeta ; 2(1): e74, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868351

RESUMO

As primary producers, plants provide food, oxygen, and other resources for global ecosystems, and should therefore be given priority in biodiversity protection. Most biodiversity research focuses on biodiversity hotspots, while biodiversity coldspots, such as deserts, are largely ignored. We propose that the factors shaping plant species diversity differ between biodiversity hot spots and cold spots, especially for desert ecosystems. To test this hypothesis, we investigated plant species diversity along the Modern Silk Road in the Northwest China desert, an area characterized by low precipitation, scarce vegetation, a limited number of species, and variable human activities. Surface soil was sampled from 144 plots, environmental DNA (eDNA) was extracted from soil samples, and seed plant species were identified using DNA metabarcoding technology. A total of 671 seed plant species were detected, which was more diverse than indicated by plot survey data. Plant species diversity gradually decreased from east to west along the Silk Road. In this area, temperature determines plant species diversity more than precipitation. Additionally, human activity has altered plant species diversity by introducing crops and invasive plants and eliminating environmentally adapted indigenous plants. Our results demonstrate the potential of eDNA metabarcoding technology for plant species diversity surveying. Desert plants have adapted to dry environments by relying on underground water or utilizing occasional rainfall as ephemerals, which are often not visible during surface surveys because of their short aboveground life cycle but can be detected with eDNA metabarcoding technology. Groundwater maintenance and human activity control are recommended for plant species diversity conservation and desertification control.

10.
BMC Biol ; 20(1): 92, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468824

RESUMO

BACKGROUND: Deep-branching phylogenetic relationships are often difficult to resolve because phylogenetic signals are obscured by the long history and complexity of evolutionary processes, such as ancient introgression/hybridization, polyploidization, and incomplete lineage sorting (ILS). Phylogenomics has been effective in providing information for resolving both deep- and shallow-scale relationships across all branches of the tree of life. The olive family (Oleaceae) is composed of 25 genera classified into five tribes with tribe Oleeae consisting of four subtribes. Previous phylogenetic analyses showed that ILS and/or hybridization led to phylogenetic incongruence in the family. It was essential to distinguish phylogenetic signal conflicts, and explore mechanisms for the uncertainties concerning relationships of the olive family, especially at the deep-branching nodes. RESULTS: We used the whole plastid genome and nuclear single nucleotide polymorphism (SNP) data to infer the phylogenetic relationships and to assess the variation and rates among the main clades of the olive family. We also used 2608 and 1865 orthologous nuclear genes to infer the deep-branching relationships among tribes of Oleaceae and subtribes of tribe Oleeae, respectively. Concatenated and coalescence trees based on the plastid genome, nuclear SNPs and multiple nuclear genes suggest events of ILS and/or ancient introgression during the diversification of Oleaceae. Additionally, there was extreme heterogeneity in the substitution rates across the tribes. Furthermore, our results supported that introgression/hybridization, rather than ILS, is the main factor for phylogenetic discordance among the five tribes of Oleaceae. The tribe Oleeae is supported to have originated via ancient hybridization and polyploidy, and its most likely parentages are the ancestral lineage of Jasmineae or its sister group, which is a "ghost lineage," and Forsythieae. However, ILS and ancient introgression are mainly responsible for the phylogenetic discordance among the four subtribes of tribe Oleeae. CONCLUSIONS: This study showcases that using multiple sequence datasets (plastid genomes, nuclear SNPs and thousands of nuclear genes) and diverse phylogenomic methods such as data partition, heterogeneous models, quantifying introgression via branch lengths (QuIBL) analysis, and species network analysis can facilitate untangling long and complex evolutionary processes of ancient introgression, paleopolyploidization, and ILS.


Assuntos
Genomas de Plastídeos , Olea , Hibridização Genética , Olea/genética , Filogenia , Poliploidia
11.
Mol Phylogenet Evol ; 166: 107330, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687844

RESUMO

Catalpa Scop. (Bignoniaceae) is a small genus (8 spp.) of trees that is disjunctly distributed among eastern Asia, eastern United States, and the West Indies. Catalpa bears beautiful inflorescences and have been cultivated as important ornamental trees for landscaping, gardening, and timber. However, the phylogenetic relationships and biogeographic history of the genus have remained unresolved. In this study, we used a large genomic dataset that includes data from the chloroplast (plastomes), and nuclear genomes (ITS and 5,759 single-copy nuclear genes) to reconstruct phylogenetic relationship within Catalpa, test interspecific gene flow events within the genus, and infer its biogeographic history. Our phylogenetic results indicate that Catalpa is monophyletic containing two main clades, section Catalpa and section Macrocatalpa. Section Catalpa is further divided into three subclades. While most relationships are congruent between the chloroplast and nuclear datasets, the position of C. ovata differs, likely due to incomplete lineage sorting. Interspecific gene flow events include C. bungei s.s. with vectors of inheritance from C. duclouxii and C. fargesii, supporting a combination of these three species and recognizing a broadly circumscribed C. bungei s.l. Our biogeographic study suggests three main dispersal events, two of which occurred during the Oligocene. The first dispersal event occurred from southwestern North America and Mexico into the Greater Antilles giving rise to the ancestor of the section of Macrocatalpa. The second dispersal event also occurred from southwestern North America and Mexico, but led to central and northern North America, subsequently reaching China through the Bering land bridge, and also reaching Europe through the North Atlantic land bridge. The third dispersal event took place in the Miocene from China to North America and gave rise to a clade composed of C. bignonioides and C. speciosa. This study uses a phylogenomic approach and biogeographical methods to infer the evolutionary history of Catalpa, highlighting issues associated with gene tree discordance, and suggesting that incomplete lineage sorting likely played an important role in the evolutionary history of Catalpa.


Assuntos
Bignoniaceae , Bignoniaceae/genética , Evolução Biológica , Genômica , Filogenia , Filogeografia
12.
Mitochondrial DNA B Resour ; 6(11): 3107-3108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621990

RESUMO

Prunus glandulosa Thunb. is an ornamental species in the genus Prunus (Rosaceae) mainly distributed in eastern China. It is often cultivated in gardens, roadsides, or shrub clusters. It looks like a cherry but resembles to prunes as well. We obtained the complete chloroplast genome of P. glandulosa using next-generation sequencing technology. The chloroplast genome is 158.078 bp in length with typical tetrad structure. It includes two copies of inverted repeats (IRs, 26.385 bp), a large single copy (LSC, 86.269 bp) and a small single copy (SSC, 19.039 bp). The total GC content is 36.7%, including 85 protein-coding genes (PCGs), 36 transfer RNA genes (tRNA), and eight ribosomal RNA genes (rRNA). The maximum-likelihood phylogeny using the full length of chloroplast genomes indicates that P. glandulosa is closer to prunes than to cherries.

13.
Ecol Evol ; 11(17): 11627-11638, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522329

RESUMO

DNA barcoding has become one of the most important techniques in plant species identification. Successful application of this technology is dependent on the availability of reference database of high species coverage. Unfortunately, there are experimental and data processing challenges to construct such a library within a short time. Here, we present our solutions to these challenges. We sequenced six conventional DNA barcode fragments (ITS1, ITS2, matK1, matK2, rbcL1, and rbcL2) of 380 flowering plants on next-generation sequencing (NGS) platforms (Illumina Hiseq 2500 and Ion Torrent S5) and the Sanger sequencing platform. After comparing the sequencing depths, read lengths, base qualities, and base accuracies, we conclude that Illumina Hiseq2500 PE250 run is suitable for conventional DNA barcoding. We developed a new "Cotu" method to create consensus sequences from NGS reads for longer output sequences and more reliable bases than the other three methods. Step-by-step instructions to our method are provided. By using high-throughput machines (PCR and NGS), labeling PCR, and the Cotu method, it is possible to significantly reduce the cost and labor investments for DNA barcoding. A regional or even global DNA barcoding reference library with high species coverage is likely to be constructed in a few years.

14.
PhytoKeys ; 180: 141-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408537

RESUMO

This paper reports on the presence of one generic and six specific new records of Cyperaceous species for the flora of Nepal. Amongst the new discoveries are the genus Machaerina, alongside species: Eleocharisochrostachys, Fimbristylisacuminata, F.ferruginea, F.nutans, F.thomsonii and Scleriarugosa. The taxonomy and distribution of Actinoscirpusgrossus, Fimbristylissalbundia and Fuirenaumbellata in Nepal are clarified through notes on nomenclature, description, distribution, specimen examination, identification keys and photographs.

15.
Forensic Sci Int ; 324: 110828, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000616

RESUMO

There are criminal cases that no frequently used evidence, for example, human DNAs from the criminal, is available. Such cases usually are unresolvable. With the advent of DNA metabarcoding, evidences are mined from environmental DNA and such cases become resolvable. This study reports how a criminal suspect was determined by environmental plant DNA metabarcoding technology. A girl was killed in a rural wet area in China without a witness or video record. Pants with dried mud was found from one of her classmate's house. The mud was removed from the pants and 11 more mud or soil samples surrounding murder scene were collected. DNA was extracted from the soil. Chloroplast rbcL gene were amplified and sequenced on a next generation sequencing platform. After bioinformatics analysis, ZOTU composition of 12 samples demonstrated that the mud on the suspect's pants was from the criminal scene. The suspect finally made a clean breast of his crime. This case implies that plant DNA in the environment soil is a new source of evidence in determination of suspects using DNA metabarcoding technology and has high potentials of extensive applications in criminal cases.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental/genética , DNA de Plantas/genética , Genética Forense/métodos , Solo/química , Cloroplastos/genética , Criminosos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homicídio , Humanos , Ribulose-Bifosfato Carboxilase/genética
16.
Mol Ecol Resour ; 21(6): 2177-2186, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934526

RESUMO

Plastid genomes play an important role in genomics and evolutionary biology. Next-generation sequencing has revolutionized plastid genomic data acquisition to the point that genome assembly has become a bottleneck for widespread utilization of plastid genome data. To solve this problem, we developed an open-source, cross-platform tool known as, NOVOWrap, which includes both command-line and graphical interfaces for automatically assembling plastid genomes on personal computers. With minimal inputs, settings, and user intervention, NOVOWrap can automatically assemble plastid genomes, validate results and standardize the structure using affordable computer resources. The performance of this software has been successfully benchmarked against the plastid genomes of 11 species belonging to lycopods, gymnosperms, and angiosperms. By liberating researchers from laborious and cumbersome computer manipulations and create reliable and standardized genomic data, NOVOWrap is expected to accelerate plastid genome assembly, ease the process of data exchange, and contribute to downstream analysis.


Assuntos
Genomas de Plastídeos , Plastídeos , Software , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Plastídeos/genética , Padrões de Referência
18.
Clin Rheumatol ; 40(1): 341-348, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32488768

RESUMO

As the precursors of macrophages and osteoclasts, monocytes play an important role in the pathogenesis of rheumatoid arthritis (RA). Since the deficiency of zinc-finger protein A20 in myeloid cells triggers erosive polyarthritis resembling RA, A20 in monocytes may play a protective role in RA. In the present study, we aimed to investigate the abnormality of monocyte subtypes and the expression of zinc-finger protein A20 in RA. Peripheral blood mononuclear cells and clinical data were collected from RA patients and healthy controls (HCs). Monocyte subtypes and A20 expression were determined through flow cytometry and compared between the two groups. Correlations between monocyte subtypes, A20 expression, and clinical data were analyzed. A total of 43 RA patients and 23 HCs were included in the present study. RA patients had higher absolute monocyte counts (p < 0.001) in the peripheral blood. The proportions and counts of intermediate monocytes (IMs) (both p < 0.001) and non-classical monocytes (NCMs) were higher (both p < 0.001) in RA patients. The expression of A20 in IMs (p < 0.001) was lower in RA patients compared with that in the HCs. Furthermore, the expression of A20 in IMs was negatively correlated with the anti-cyclic citrullinated peptide (CCP) antibody level in RA patients (r = - 0.409, p = 0.01). The expression of A20 in NCMs was positively correlated with modified total Sharp score (mTSS) in RA patients (r = 0.471, p = 0.02). Collectively, we proved that IMs and NCMs were increased in RA patients, suggesting that they played a suggestive role in the pathogenesis of RA. Furthermore, the downregulation of A20 in IMs might be correlated with anti-CCP antibody production. The A20 expression in NCMs might affect bone erosion in RA. Key Points • IMs and NCMs were increased in the peripheral blood of RA patients, suggesting their pathogenic role in RA. • The decreased expression of zinc-finger protein A20 in IMs of RA patients suggested the protective role of A20 in RA. • The negative correlation between the A20 expression in IMs and anti-CCP antibody revealed that A20 in IMs might be related to the formation of anti-CCP antibodies. • The positive correlation between the A20 expression in NCMs and mTSS revealed that A20 in NCMs might affect the bone erosion in RA.


Assuntos
Artrite Reumatoide , Monócitos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Autoanticorpos , Humanos , Leucócitos Mononucleares , Osteoclastos , Peptídeos Cíclicos
19.
Plant Mol Biol ; 105(3): 215-228, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32880855

RESUMO

KEY MESSAGE: We applied the phylogenomics to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity. Rice (genus Oryza) is one of the most important crops in the world, supporting half of the world's population. Breeding of high-yielding and quality cultivars relies on genetic resources from both cultivated and wild species, which are collected and maintained in seed banks. Unfortunately, numerous seeds are mislabeled due to taxonomic issues or misidentifications. Here, we applied the phylogenomics of 58 complete chloroplast genomes and two hypervariable nuclear genes to determine species identity in rice seeds. Twenty-one Oryza species were identified. Conspecific relationships were determined between O. glaberrima and O. barthii, O. glumipatula and O. longistaminata, O. grandiglumis and O. alta, O. meyeriana and O. granulata, O. minuta and O. malampuzhaensis, O. nivara and O. sativa subsp. indica, and O. sativa subsp. japonica and O. rufipogon. D and L genome types were not found and the H genome type was extinct. Importantly, we evaluated the performance of four conventional plant DNA barcodes (matK, rbcL, psbA-trnH, and ITS), six rice-specific chloroplast DNA barcodes (psaJ-rpl33, trnC-rpoB, rps16-trnQ, rpl22-rps19, trnK-matK, and ndhC-trnV), two rice-specific nuclear DNA barcodes (NP78 and R22), and a chloroplast genome super DNA barcode. The latter was the most reliable marker. The six rice-specific chloroplast barcodes revealed that 17% of the 53 seed accessions from rice seed banks or field collections were mislabeled. These results are expected to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity.


Assuntos
Código de Barras de DNA Taxonômico , Oryza/classificação , Oryza/genética , Funções Verossimilhança , Filogenia , Sementes/genética , Especificidade da Espécie , Bancos de Tecidos
20.
Forensic Sci Int ; 317: 110552, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33147546

RESUMO

In the field of criminal investigations, in the event that a body is found in water, the ability to differentiate whether the cause of death was drowning or the body was murdered then dumped into water elsewhere is difficult but important for case detection. Detecting diatoms in human organs can be used to effectively identify if the cause of death was drowning. At present, diatom detection methods are roughly divided into morphological and molecular detection methods, but both methods have different limitations. In this study, a total of 79 samples from 23 victims in 19 known drowning deaths were collected. The diatom morphological identification combined with DNA metabarcoding technology was used to compare the reliability of the diatom detection method. Microscopic observations revealed that the positive detection rate of diatoms was 52.6 %, 26.3 % and 58.8 % respectively in the kidney, liver and lung samples. DNA metabarcoding analysis found that the positive detection rate of diatoms was 31.6 %, 31.6 % and 35.3 % respectively in kidney, liver and lung samples. When compared with barcode BacirbcL, barcode 18S605 detected more diatoms, while diatoms in BacirbcL were more consistent with environmental samples. The comparative analysis found that microscopic observations were not highly correlated with the identification results of DNA barcoding technology. There were no obvious differences in the effect of internal organs on diatom enrichment, and different organs should be tested at the same time. At present, the DNA barcode reference sequence is gravely insufficient and has many errors, which leads to restrictions in the application of this technology, resulting in many OTU not being accurately identified. This explains why the success rate of molecular identification is not higher than that of microscopic identification. Construction of a reliable diatom DNA barcode reference sequence database is an urgent task for drowning forensics.


Assuntos
Código de Barras de DNA Taxonômico , Diatomáceas/genética , Afogamento/diagnóstico , Adulto , Criança , DNA/isolamento & purificação , Feminino , Medicina Legal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim/patologia , Fígado/patologia , Pulmão/patologia , Masculino , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...