Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 679243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164343

RESUMO

Lung cancer is the common malignant tumor with the highest death rate in the world. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a potential anticancer agent induces selective apoptotic death of human cancer cells. Unfortunately, approximately half of lung cancer cell lines are intrinsically resistant to TRAIL-induced cell death. In this study, we identified RuvBL1 as a repressor of c-Jun/AP-1 activity, contributing to TRAIL resistance in lung cancer cells. Knocking down RuvBL1 effectively sensitized resistant cells to TRAIL, and overexpression of RuvBL1 inhibited TRAIL-induced apoptosis. Moreover, there was a negative correlation expression between RuvBL1 and c-Jun in lung adenocarcinoma by Oncomine analyses. High expression of RuvBL1 inversely with low c-Jun in lung cancer was associated with a poor overall prognosis. Taken together, our studies broaden the molecular mechanisms of TRAIL resistance and suggest the application of silencing RuvBL1 synergized with TRAIL to be a novel therapeutic strategy in lung cancer treatment.

2.
Ultrason Sonochem ; 75: 105587, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33993035

RESUMO

The bubbles have been widely used in biomedical field, military and chemical industry. The liquid jet generated by the bubble collapse through an orifice is utilized in needle-free injections and inkjet printing. In this paper we devised synchronized triggering equipment, experimentally investigated the mechanism in the interaction of an electric-spark generated a single bubble and a vertical wall with an air-back opening. Detailed observations were recorded and described for bubble oscillation, migration, jetting, as well as the high-speed water spike penetrating through the opening. The results revealed that there was a critical value of the bubble-wall distance, below which the bubble was directed away from the incomplete boundary, while the bubble may tear from the middle for larger distance. As the distance varied, we studied the volume of the water that rushed through the opening, the velocity at the tip of the water spike, and the center of the bubble as well as the migration of the bubble boundary. This work reveals that the high-speed water spike caused by the bubble may be a potential threat to the structures, specifically for cases with a small opening size and short bubble-boundary distance.

3.
Ultrason Sonochem ; 64: 104951, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32106062

RESUMO

The dynamics of a bubble near a corner formed by two flat rigid boundaries (walls), is studied experimentally using a spark-generated bubble. The expansion, collapse, rebound, re-collapse and migration of the bubble, along with jetting and protrusion, are captured using a high-speed camera. Our experimental observations reveal the behaviour of the bubble in terms of the corner angle and the dimensionless standoff distances to the near and far walls in terms of the maximum bubble radius. The bubble remains approximately spherical during expansion except for its surface becoming flattened when in close proximity to a wall. When a bubble is initiated at the bisector of the two walls, the bubble becomes oblate along the bisector during the late stages of collapse. A jet forms towards the end of collapse, pointing to the corner. The closer the bubble to the two walls, the more oblate along the bisector the bubble becomes, and the wider the jet. A bubble initiated near one of the two walls is mainly influenced by the nearer wall. The jet formed is pointing to the near wall but inclined towards the corner. After the jet penetrates through the bubble surface, the bubble becomes a bubble ring, and a bubble protrusion forms following the jet. The bubble ring collapses and subsequently disappears, while the protrusion firstly expands, and then collapses and migrates to the corner.

4.
Materials (Basel) ; 12(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627450

RESUMO

The three-dimensional vibration of a functionally graded sandwich rectangular plate on an elastic foundation with normal boundary conditions was analyzed using a semi-analytical method based on three-dimensional elasticity theory. The material properties of the sandwich plate varied with thickness according to the power law distribution. Two types of functionally graded material (FGM) sandwich plates were investigated in this paper: one with a homogeneous core and FGM facesheets, and another with homogeneous panels and an FGM core. Various displacements of the plates were created using an improved Fourier series consisting of a standard Fourier cosine series along with a certain number of closed-form auxiliary functions satisfying the essential boundary conditions. The vibration behavior of the FGM sandwich plate, including the natural frequencies and mode shapes, was obtained using the Ritz method. The effectiveness and accuracy of the suggested technique were fully verified by comparing the natural frequencies of sandwich plates with results from investigations of other functionally graded sandwich rectangular plates in the literature. A parametric study, including elastic parameters, foundation parameters, power law exponents, and layer thickness ratios, was performed, and some new results are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA