Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133771, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364581

RESUMO

The ubiquitous presence of microplastics (MPs) in aquatic environments poses a significant threat to crustaceans. Although exoskeleton quality is critical for crustacean survival, the impact of MPs on crustacean exoskeletons remains elusive. Our study represents a pioneering effort to characterize the effects of MPs exposure on crustacean exoskeletons. In this study, the mechanical properties of whiteleg shrimp Litopenaeus vannamei exoskeletons were analyzed after exposure to environmentally realistic levels of MPs. Nanoindentation data demonstrated that MPs exposure significantly increased the hardness and modulus of both the carapace and abdominal segments of L. vannamei. Moreover, fractures and embedded MPs were detected on the exoskeleton surface using SEM-EDS analysis. Further analysis demonstrated that the degree of chitin acetylation (DA) in the shrimp exoskeleton, as indicated by FTIR peaks, was reduced by MPs exposure. In addition, exposure to MPs significantly inhibited the muscle Ca2+-ATPase activity and hemolymph calcium levels. Transcriptome and metabolome analyses revealed that the expression levels of genes encoding key enzymes and metabolites in the chitin biosynthetic pathway were significantly affected by MPs exposure. In conclusion, MPs at environmentally relevant concentrations may affect the exoskeletal mechanical properties of L. vannamei through a comprehensive mechanism involving the disruption of the crystalline structure of chitin, assimilation into the exoskeleton, and dysregulation of exoskeleton biosynthesis-related pathways.


Assuntos
Microplásticos , Penaeidae , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Transcriptoma , Quitina/metabolismo
2.
Fish Shellfish Immunol ; 142: 109093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722437

RESUMO

C-type lectins (CTLs), a superfamily of Ca2+-dependent carbohydrate-recognition proteins, serve as pattern recognition receptors (PRRs) in the immune response of many species. However, little is currently known about the CTLs of the commercially and ecologically important bivalve species, blood clam (Tegillarca granosa). In this study, a CTL (designated as TgCTL-1) with a single carbohydrate-recognition domain (CRD) containing unique QPN/WDD motifs was identified in the blood clam through transcriptome and whole-genome searching. Multiple alignment and phylogenetic analysis strongly suggested that TgCTL-1 was a new member of the CTL superfamily. Expression analysis demonstrated that TgCTL-1 was highly expressed in the hemocytes and visceral mass of the clam under normal condition. In addition, the expression of TgCTL-1 was shown to be significantly up-regulated upon pathogen challenge. Moreover, the recombinant TgCTL-1 (rTgCTL-1) displayed agglutinating and binding activities against both the gram-positive and gram-negative bacteria tested in a Ca2+-dependent manner. Furthermore, it was found that the in vitro phagocytic activity of hemocytes was significantly enhanced by rTgCTL-1. In general, our results showed that TgCTL-1 was an inducible acute-phase secretory protein, playing crucial roles in recognizing, agglutinating, and binding to pathogenic bacteria as well as modulating phagocytic activity of hemocytes in the innate immune defense of blood clam.


Assuntos
Arcidae , Bivalves , Animais , Imunidade Inata/genética , Sequência de Aminoácidos , Sequência de Bases , Bactérias Gram-Negativas/fisiologia , Lectinas Tipo C , Filogenia , Antibacterianos , Bactérias Gram-Positivas/fisiologia , Bivalves/metabolismo , Arcidae/metabolismo , Carboidratos
3.
Adv Healthc Mater ; 12(29): e2301799, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611966

RESUMO

Nanoplastics (NPs) may pass through the blood-brain barrier, giving rise to serious concerns about their potential toxicity to the brain. In this study, the effects of NPs exposure on learning and memory, the primary cognitive functions of the brain, are assessed in zebrafish with classic T-maze exploration tasks. Additionally, to reveal potential affecting mechanisms, the impacts of NPs exposure on brain aging, oxidative damage, energy provision, and the cell cycle are evaluated. The results demonstrate that NP-exposed zebrafish takes significantly longer for their first entry and spends markedly less time in the reward zone in the T-maze task, indicating the occurrence of learning and memory deficits. Moreover, higher levels of aging markers (ß-galactosidase and lipofuscin) are detected in the brains of NP-exposed fish. Along with the accumulation of reactive free radicals, NP-exposed zebrafish suffer significant levels of brain oxidative damage. Furthermore, lower levels of Adenosine triphosphate (ATP) and cyclin-dependent kinase 2 and higher levels of p53 are observed in the brains of NP-exposed zebrafish, suggesting that NPs exposure also results in a shortage of energy supply and an arrestment of the cell cycle. These findings suggest that NPs exposure may pose a severe threat to brain health, which deserves closer attention.


Assuntos
Nanopartículas , Poliestirenos , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Peixe-Zebra/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Estresse Oxidativo , Envelhecimento , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Nanopartículas/metabolismo
4.
Fish Shellfish Immunol ; 140: 108988, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541635

RESUMO

The lectins are a large family of carbohydrate-binding proteins that play important roles in the innate immune response of various organisms. Although C-type lectin domain family 3 member B (CLEC3B), an important member of C-type lectin, has been well documented in humans and several other higher vertebrates, little is currently known about this molecule in economically important marine fish species. In this study, through transcriptomic and BLAST screening, a novel CLEC3B gene was identified in the golden pompano (Trachinotus ovatus). The T. ovatus CLEC3B (ToCLEC3B) was subsequently characterized by bioinformatic analysis and compared with those reported in other species. In addition, the expression patterns of ToCLEC3B in different tissues under normal condition and at different times post pathogen challenge were assessed. Furthermore, the agglutinating activity of ToCLEC3B with and without Ca2+ against different bacteria and blood cells of donor species were verified using the recombinant T. ovatus CLEC3B (rToCLEC3B). Our results demonstrated that ToCLEC3B is a Ca2+-dependent galactose-binding lectin with a single copy of carbohydrate recognition domain (CRD). Similar to CLEC3B reported in other species, the CRD domain of ToCLEC3B consists of two α-helices, six ß-sheets, and four loops, forming two Ca2+- and a galactose-binding sites. According to the phylogenetic analysis, the ToCLEC3B was highly similar (similarity at 95.00%) to that of its relative, the greater amberjack (Seriola dumerili). The expression of ToCLEC3B was detected in all tissues examined under normal condition and was significantly up-regulated by injection of pathogenic microbes. In addition, the rToCLEC3B exhibited strong agglutinating activity against different bacteria and blood cells of donor species in the presence of Ca2+. Our results indicate that ToCLEC3B is a constitutive and inducible acute-phase immune factor in the host's innate immune response of T. ovatus.


Assuntos
Proteínas de Peixes , Perciformes , Humanos , Animais , Proteínas de Peixes/química , Filogenia , Peixes , Imunidade Inata/genética
5.
Environ Pollut ; 334: 122244, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482340

RESUMO

Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.


Assuntos
Poluentes Ambientais , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/fisiologia , Poluentes Ambientais/farmacologia , Cálcio/farmacologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo
6.
Environ Health Perspect ; 131(4): 47006, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37027337

RESUMO

BACKGROUND: Environmental pollution may give rise to the incidence and progression of nonalcoholic fatty liver disease (NAFLD), the most common cause for chronic severe liver lesions. Although knowledge of NAFLD pathogenesis is particularly important for the development of effective prevention, the relationship between NAFLD occurrence and exposure to emerging pollutants, such as microplastics (MPs) and antibiotic residues, awaits assessment. OBJECTIVES: This study aimed to evaluate the toxicity of MPs and antibiotic residues related to NAFLD occurrence using the zebrafish model species. METHODS: Taking common polystyrene MPs and oxytetracycline (OTC) as representatives, typical NAFLD symptoms, including lipid accumulation, liver inflammation, and hepatic oxidative stress, were screened after 28-d exposure to environmentally realistic concentrations of MPs (0.69mg/L) and antibiotic residue (3.00µg/L). The impacts of MPs and OTC on gut health, the gut-liver axis, and hepatic lipid metabolism were also investigated to reveal potential affecting mechanisms underpinning the NAFLD symptoms observed. RESULTS: Compared with the control fish, zebrafish exposed to MPs and OTC exhibited significantly higher levels of lipid accumulation, triglycerides, and cholesterol contents, as well as inflammation, in conjunction with oxidative stress in their livers. In addition, a markedly smaller proportion of Proteobacteria and higher ratios of Firmicutes/Bacteroidetes were detected by microbiome analysis of gut contents in treated samples. After the exposures, the zebrafish also experienced intestinal oxidative injury and yielded significantly fewer numbers of goblet cells. Markedly higher levels of the intestinal bacteria-sourced endotoxin lipopolysaccharide (LPS) were also detected in serum. Animals treated with MPs and OTC exhibited higher expression levels of LPS binding receptor (LBP) and downstream inflammation-related genes while also exhibiting lower activity and gene expression of lipase. Furthermore, MP-OTC coexposure generally exerted more severe effects compared with single MP or OTC exposure. DISCUSSION: Our results suggested that exposure to MPs and OTC may disrupt the gut-liver axis and be associated with NAFLD occurrence. https://doi.org/10.1289/EHP11600.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Oxitetraciclina , Animais , Oxitetraciclina/toxicidade , Oxitetraciclina/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Poliestirenos/toxicidade , Peixe-Zebra/genética , Microplásticos/toxicidade , Plásticos/metabolismo , Lipopolissacarídeos/metabolismo , Antibacterianos/toxicidade , Fígado/metabolismo , Inflamação/induzido quimicamente
7.
Water Res ; 233: 119736, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801581

RESUMO

Recently, increased production and consumption of disinfectants such as triclosan (TCS) and triclocarban (TCC) have led to massive pollution of the environment, which draws global concern over the potential risk to aquatic organisms. However, the olfactory toxicity of disinfectants in fish remains elusive to date. In the present study, the impact of TCS and TCC on the olfactory capacity of goldfish was assessed by neurophysiological and behavioral approaches. As shown by the reduced distribution shifts toward amino acid stimuli and hampered electro-olfactogram responses, our results demonstrated that TCS/TCC treatment would cause deterioration of the olfactory ability of goldfish. Our further analysis found that TCS/TCC exposure suppressed the expression of olfactory G protein-coupled receptors in the olfactory epithelium, restricted the transformation of odorant stimulation into electrical responses by disturbing the cAMP signaling pathway and ion transportation, and induced apoptosis and inflammation in the olfactory bulb. In conclusion, our results demonstrated that an environmentally realistic level of TCS/TCC would weaken the olfactory capacity of goldfish by constraining odorant recognition efficiency, disrupting olfactory signal generation and transduction, and disturbing olfactory information processing.


Assuntos
Carbanilidas , Desinfetantes , Triclosan , Animais , Triclosan/toxicidade , Triclosan/química , Carpa Dourada , Odorantes , Carbanilidas/química , Transdução de Sinais
8.
Sci Total Environ ; 858(Pt 3): 160094, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372168

RESUMO

The ubiquitous presence of antibiotic residues in aqueous environments poses a great potential threat to aquatic organisms. Nevertheless, the behavioral effects of environmentally realistic levels of antibiotics remain poorly understood in fish species. In this study, the behavioral impacts of enrofloxacin, one of typical fluoroquinolone antibiotics that is frequently detected in aquatic environments, were evaluated by the classic light-dark test (LDT) and novel tank task (NTT) in zebrafish. Furthermore, the effects of enrofloxacin exposure on the microbiota-gut-brain axis were also assessed to reveal potential affecting mechanisms underlying the behavioral abnormality observed. Our results demonstrated that zebrafish exposed to 60 µg/L enrofloxacin for 28 days took significantly longer to enter the stressful area of the testing tank and spent significantly less time there in both the LDT and NTT, indicating abnormal anxiety-like behaviors induced by the exposure. In addition, exposure to enrofloxacin at 6 and 60 µg/L resulted in a significant elevation in Bacteroidetes and a marked decline in the Firmicutes/Bacteroidetes ratio of the gut microbiota. Moreover, the intestinal contents of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), glucagon-like peptide 1 (GLP-1), and 5-hydroxytryptamine (5-HT) in zebrafish were significantly upregulated, whereas those of plasma adrenocorticotropic hormone (ACTH) and cortisol (COR) were markedly downregulated upon enrofloxacin exposure. Incubation of zebrafish with a high dose of enrofloxacin (60 µg/L) also resulted in evident increases in the contents of corticotropin-releasing hormone (CRH), brain-derived neurotrophic factor (BDNF), and neuropeptide Y (NPY) in the brain. Fortunately, no significant alteration in the expression of glial fibrillary acidic protein (GFAP) was detected in the brain after enrofloxacin exposure. Our findings suggest that the disruption of the microbiota-gut-brain axis may account for enrofloxacin-induced anxiety-like behaviors in zebrafish. Since the disruption of microbiota-gut-brain axis may give rise to various clinical symptoms, the health risk of antibiotic exposure deserves more attention.


Assuntos
Eixo Encéfalo-Intestino , Peixe-Zebra , Animais , Enrofloxacina , Antibacterianos/toxicidade
9.
Environ Sci Technol ; 56(22): 15848-15859, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36260920

RESUMO

The ubiquitous presence of fluoxetine (FLX) in aquatic environments poses great threat to fish species. However, little is known about its deleterious impacts on fish olfaction. In this study, the olfactory toxicity of FLX at environmentally realistic levels was assessed by monitoring the behavioral and electroolfactogram (EOG) responses to olfactory stimuli with goldfish (Carassius auratus), and the toxification mechanisms underlying the observed olfaction dysfunction were also investigated. Our results showed that the behavioral and EOG responses of goldfish to olfactory stimuli were significantly weakened by FLX, indicating an evident toxicity of FLX to olfaction. Moreover, FLX exposure led to significant alterations in olfactory initiation-related genes, suppression of ion pumps (Ca2+-ATPase and Na+/K+-ATPase), tissue lesions, and fewer olfactory sensory neurons in olfactory epithelium. In addition to altering the expression of olfactory transmission-related genes, comparative metabolomic analysis found that olfaction-related neurotransmitters (i.e., l-glutamate and acetylcholine) and the olfactory transduction pathway were significantly affected by FLX. Furthermore, evident tissue lesions, aggravated lipid peroxidation and apoptosis, and less neuropeptide Y were observed in the olfactory bulbs of FLX-exposed goldfish. Our findings indicate that FLX may hamper goldfish olfaction by interfering with the initiation, transmission, and processing of olfactory signals.


Assuntos
Fluoxetina , Carpa Dourada , Animais , Carpa Dourada/genética , Olfato , Adenosina Trifosfatases
10.
J Hazard Mater ; 439: 129681, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104908

RESUMO

The ubiquitous presence of pentachlorophenol (PCP) in ocean environments threatens marine organisms. However, its effects on immunity of marine invertebrates at environmentally realistic levels are still largely unknown. In this study, the immunotoxicity of PCP to a representative bivalve species was evaluated. In addition, its impacts on metabolism, energy supply, detoxification, and oxidative stress status were also analysed by physiological examination as well as comparative transcriptomic and metabolomic analyses to reveal potential mechanisms underpinning. Results illustrated that the immunity of blood clams was evidently hampered upon PCP exposure. Additionally, significant alterations in energy metabolism were detected in PCP-exposed clams. Meanwhile, the expressions of key detoxification genes and the in vivo contents (or activity) of key detoxification enzymes were markedly altered. Exposure to PCP also triggered significant elevations in intracellular ROS and MDA whereas evident suppression of haemocyte viability. The abovementioned findings were further supported by transcriptomic and metabolomic analyses. Our results suggest that PCP may hamper the immunity of the blood clam by (i) constraining the cellular energy supply through disrupting metabolism; and (ii) damaging haemocytes through inducing oxidative stress. Considering the high similarity of immunity among species, many marine invertebrates may be threatened by PCP, which deserves more attention.


Assuntos
Arcidae , Bivalves , Pentaclorofenol , Animais , Bivalves/metabolismo , Hemócitos , Estresse Oxidativo , Pentaclorofenol/metabolismo , Pentaclorofenol/toxicidade
11.
Sci Total Environ ; 838(Pt 3): 156442, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660597

RESUMO

Forming calcareous exoskeletons is crucial for the health and survival of calcifiers such as bivalves. However, the impacts of waterborne emergent pollutants on this important process remain largely unknown. In this study, the effects of two types of emergent pollutants, microplastics (MPs) and carbamazepine (CBZ), which are ubiquitously present in ocean environments, on shell formation were assessed in the thick-shell mussel (Mytilus coruscus) with a shell regeneration experiment. In addition, their impacts on the in vivo contents of ATP, Ca2+, carbonic anhydrase (CA), and bone morphogenetic protein receptor type-2 (BMPR2), the activity of phosphofructokinase (PFK) and Ca2+-ATPase, and the expression of shell-formation related genes were analyzed. The data collected demonstrated that shell regeneration after mechanical injury was significantly arrested by CBZ and/or MPs. Besides, all the physiological and molecular parameters investigated were markedly suppressed by these two pollutants. Furthermore, synergistic impacts on most of the parameters examined were observed between CBZ and MPs. Our results indicate that these two pollutants may disrupt shell formation by constraining the availability of raw materials and energy, inhibiting the formation of the organic shell matrix, and interfering with the regulation of crystallization, which may have far-reaching impacts on the health of marine calcifiers.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Carbamazepina/toxicidade , Microplásticos , Mytilus/fisiologia , Plásticos/toxicidade , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 307: 119497, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594997

RESUMO

Robust antimicrobial capability is crucial for marine organisms survival in complex ocean environments. Although the detrimental impacts of emergent pollutants on cellular immune response of marine bivalve mollusks were increasingly documented, the effects of bisphenol A (BPA) and microplastics (MPs) on humoral immune response and hemocyte chemotactic activity remain unclear. Therefore, in this study, the toxicities of BPA and MPs, alone or in combination, to the antimicrobial ability, humoral immune response, and hemocyte chemotactic activity were investigated in the blood clam Tegillarca granosa. Our data demonstrated that exposure of blood clams to BPA, MPs, and BPA-MPs for 2 weeks lead to significant reductions in their survival rates upon pathogenic bacterial challenge, indicating evident impairment of antimicrobial ability. Compared to control, the plasma of pollutant-incubated blood clams exhibited significantly less antimicrobial activity against the growth of V. harveyi, suggesting significant reduction in humoral immune effectors including defensin, lysozyme (LZM), and lectin. Moreover, hemocytes migration across the polycarbonate membrane to the serum containing chamber was markedly arrested by 2-week exposure to BPA, MPs, and BPA-MPs, suggesting a hampered chemotactic activity. In addition, the intracellular contents of ROS and protein carbonyl in hemocytes were markedly induced whereas the expression levels of key genes from the MAPK and actin cytoskeleton regulation pathways were significantly suppressed upon exposure. In this study, it was also found that BPA-MP coexposure was significantly more toxic than single exposures. In summary, our findings revealed that exposure to the pollutants tested possibly impair the antimicrobial ability of blood clam through (1) reducing the inhibitory effect of plasma on bacterial growth, the contents of humoral immune effectors, and the chemotactic activity of hemocytes, (2) interrupting IL-17 activation of MAPK signal pathway, (3) inducing intracellular ROS, elevating protein carbonylation levels, and disrupting actin cytoskeleton regulation in hemocytes.


Assuntos
Anti-Infecciosos , Arcidae , Bivalves , Poluentes Químicos da Água , Animais , Anti-Infecciosos/farmacologia , Compostos Benzidrílicos , Hemócitos , Imunidade Humoral , Microplásticos , Fenóis , Plásticos/farmacologia , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade
13.
Fish Shellfish Immunol ; 124: 174-181, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398526

RESUMO

Molluscs, the second largest animal phylum on earth, primarily rely on cellular and humoral immune responses to fight against pathogen infection. Although antimicrobial peptides (AMPs) such as big defensin play crucial roles in the humoral immune response, it remains largely unknown in the ecological and economic important blood clam (Tegillarca granosa). In this study, a novel big defensin gene (TgBD) was identified in T. granosa through transcripts and whole genome searching. Bioinformatic analyses were conducted to explore the molecular characteristics of TgBD, and comparisons of TgBD with those reported in other molluscs were performed by multiple alignments and phylogenetic analysis. In addition, the expression patterns of TgBD in various tissues and upon bacterial challenge were investigated while the antimicrobial activity of synthetic N-terminal domain of TgBD was confirmed in vitro by radial diffusion experiment. Results obtained showed TgBD had an open reading frame (ORF) of 369 bp, encoding a prepropeptide containing a signal peptide and a propeptide. Similar to big defensins reported in other species, TgBD consists of a hydrophobic N-terminal domain containing ß1-α1-α2-ß2 folds and a cysteine-rich cationic C-terminal domain with three disulfide bonds between C1-C5, C2-C4, and C3-C6. Phylogenetic analysis showed that TgBD shared 76.80% similarity to its close relative ark shell (Scapharca broughtoni). In addition, TgBD expression was observed in all tissues investigated under normal conditions and was significantly induced by injection of Vibrio parahaemolyticus. Furthermore, synthetic N-terminal peptide of TgBD exhibited strong antimicrobial activity against Gram-positive bacteria tested. Our results indicated that TgBD is a constitutive and inducible acute phase AMP, which provides a universal and prompt protection for T. granosa.


Assuntos
Anti-Infecciosos , Arcidae , Bivalves , Animais , Anti-Infecciosos/farmacologia , Bivalves/genética , Bivalves/metabolismo , Defensinas/química , Defensinas/genética , Defensinas/farmacologia , Filogenia
14.
Environ Sci Technol ; 56(7): 4324-4335, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293730

RESUMO

Although the impacts of ocean acidification and warming on marine organisms have been increasingly documented, little is known about the affecting mechanism underpinning their interactive impacts on physiological processes such as metabolism. Therefore, the effects of these two stressors on metabolism were investigated in thick-shell mussel Mytilus coruscus in this study. In addition, because metabolism is primarily regulated by circadian rhythm and neurotransmitters, the impacts of acidification and warming on these two regulatory processes were also analyzed. The data obtained demonstrated that the metabolism of mussels (indicated by the clearance rate, oxygen consumption rate, ammonia excretion rate, O:N ratio, ATP content, activity of pyruvate kinase, and expression of metabolism-related genes) were significantly affected by acidification and warming, resulting in a shortage of energy supply (indicated by the in vivo content of ATP). In addition, exposure to acidification and warming led to evident disruption in circadian rhythm (indicated by the heartrate and the expression rhythm of Per2, Cry, and BMAL1) and neurotransmitters (indicated by the activity of acetyl cholinesterase and in vivo contents of ACh, GABA, and DA). These findings suggest that circadian rhythms and neurotransmitters might be potential routes through which acidification and warming interactively affect the metabolism of mussels.


Assuntos
Mytilus , Água do Mar , Animais , Ritmo Circadiano , Concentração de Íons de Hidrogênio , Mytilus/metabolismo , Neurotransmissores/metabolismo , Oceanos e Mares
15.
Chemosphere ; 292: 133499, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34979205

RESUMO

Marine bivalve molluscs are one of the primary seafood for consumers. Inhabiting terrigenous pollutant-convergent coastal areas and feeding through seawater filtration, edible bivalves are subjected to waterborne emerging pollutants such as microplastics (MPs) and tetrabromobisphenol A (TBBPA). Nevertheless, the potential risks of consuming MP-TBBPA contaminated seafood are still largely unknown. With that, accumulation of TBBPA with and without the presence of MPs in a commercial bivalve species, blood clam (Tegillarca granosa), was determined in the present study. Meanwhile, corresponding target hazard quotients (THQs) as well as margins of exposure (MoEs) were estimated to evaluate the potential health risks for clam consumers. Furthermore, the impacts of pollutants accumulation on the detoxification process and energy supply were analysed. The data obtained demonstrated that MPs aggravate the accumulation of TBBPA in clams, leading to elevated potential food safety risks (indicated by higher THQ values and lower MoE values) for consumers. In addition, the in vivo contents of CYP1A1 and UDP-glucuronosyltransferase, the enzymatic activity of glutathione-S-transferase, and the expression levels of five detoxification-related genes were all dramatically suppressed by MP-TBBPA. Furthermore, clams exposed to MP-TBBPA had significantly lower adenosine triphosphate contents and lower pyruvate kinase and phosphofructokinase activities. These results indicated that the aggravation of TBBPA accumulation may be due to the hence disruption of detoxification process and limited energy available for detoxification.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Inocuidade dos Alimentos , Microplásticos , Plásticos , Bifenil Polibromatos , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 810: 152354, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914981

RESUMO

Gonadal development is a prerequisite for the reproductive success of an organism, and might be affected by environmental factors such as emergent pollutants. Although marine crustaceans are threatened by ubiquitous emergent pollutants such as microplastics (MPs) and bisphenol A (BPA) under realistic scenarios, studies about the impacts of these pollutants on the gonadal development of crustacean species are rare. In this study, the effects of MPs and BPA, alone or in combination, on gonadal development were investigated in whiteleg shrimp (Litopenaeus vannamei). The results obtained demonstrated that whiteleg shrimp exposed to MPs and BPA had significantly smaller gonad-somatic index (GSI) and an obvious delay in the gonad developmental stage. In addition, exposure of whiteleg shrimp to pollutants tested resulted in a reduction in the oxygen consumption rate, elevation in the ammonia excretion rate, decline in the O: N ratio, and downregulation in the expression of metabolism-related genes, indicating significant disruptions of shrimp metabolism by the pollutants. Furthermore, in addition to a few exceptions, both the in vivo contents of gonadal development-related hormones (GIH and MIH) and the expression of genes encoding regulatory hormones (GIH, MIH, and CHH) were upregulated by the exposure of whiteleg shrimp to the pollutants investigated, suggesting a significant obstruction of endocrine regulation. Moreover, MP-BPA coexposure was shown to be more toxic to whiteleg shrimp than the corresponding single exposures and significantly greater amount of BPA accumulated in the gonads (both testis and ovaries) of shrimp with the coexistence of MPs, which may be caused by the Trojan horse effect and summation of the toxic impacts on common targets. In general, the data obtained in this study demonstrated that MPs and BPA at environmentally realistic concentrations significantly inhibited the gonadal development of whiteleg shrimp probably by interfering with metabolism and disrupting endocrine regulation.


Assuntos
Microplásticos , Penaeidae , Animais , Compostos Benzidrílicos , Gônadas , Hormônios , Masculino , Fenóis , Plásticos
17.
Aquat Toxicol ; 242: 106049, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34875489

RESUMO

By employing external fertilization (broadcast spawning) as a mating strategy, the gametes and subsequent fertilization of various marine invertebrates are directly subjected to pollution. Although microplastics (MPs) are ubiquitous in marine environments, their potential effects on the fertilization of broadcast spawners remain largely unknown. Therefore in this study, the impacts of polystyrene MPs on the fertilization success of broadcast spawning bivalve (Tegillarca granosa) were investigated. In order to reveal the underlying mechanisms affecting fertilization, the sperm swimming performance, sperm ATP status, sperm viability, DNA integrity, gamete collision probability, gamete fusion efficiency, enzymatic antioxidants, and key ion transport enzyme activities were analyzed. The results showed that MPs weakened the sperm swimming performance through reducing ATP production and cell viability, thus leading to the decreased probability of gamete collision. Furthermore, MPs affected ion transport in the gametes by inducing oxidative stress, which resulted in gamete fusion failure. In conclusion, this study demonstrates that MPs could significantly decrease the fertilization success of T. granosa through reducing gamete collision and lowering gamete fusion efficiency.


Assuntos
Bivalves , Células Germinativas/efeitos dos fármacos , Microplásticos , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Fertilização , Masculino , Microplásticos/toxicidade , Espermatozoides , Poluentes Químicos da Água/toxicidade
18.
Environ Pollut ; 290: 118027, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428706

RESUMO

With the fast growth of the production and application of engineered nanomaterials (ENMs), nanoparticles (NPs) that escape into the environment have drawn increasing attention due to their ecotoxicological impacts. Motile microalgae are a type of primary producer in most ecosystems; however, the impacts of NPs on the motility of microalgae have not been studied yet. So the toxic impacts of three common metal oxide NPs (nTiO2, nZnO, and nFe2O3) on swimming speed and locomotion mode of a marine microalgae, Platymonas subcordiformis, were investigated in this study. Our results demonstrated that both the velocity and linearity (LIN) of swimming were significantly decreased after the exposure of P. subcordiformis to the tested NPs. In addition, the obtained data indicate that NPs may suppress the motility of P. subcordiformis by constraining the energy available for swimming, as indicated by the significantly lower amounts of intracellular ATP and photosynthetic pigments and the lower activities of enzymes catalyzing glycolysis. Incubation of P. subcordiformis with the tested NPs generally resulted in the overproduction of reactive oxygen species (ROS), aggravation of lipid peroxidation, and induction of antioxidant enzyme activities, suggesting that imposing oxidative stress, which may impair the structural basis for swimming (i.e. the membrane of flagella), could be another reason for the observed motility suppression. Moreover, NP exposure led to significant reductions in the cell viability of P. subcordiformis, which may be due to the disruption of the energy supply (i.e., photosynthesis) and ROS-induced cellular damage. Our results indicate that waterborne NPs may pose a great threat to motile microalgae and subsequently to the health and stability of the marine ecosystem.


Assuntos
Nanopartículas Metálicas , Microalgas , Nanopartículas , Poluentes Químicos da Água , Ecossistema , Nanopartículas Metálicas/toxicidade , Óxidos , Poluentes Químicos da Água/toxicidade
19.
Sci Total Environ ; 783: 147003, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865135

RESUMO

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are universally detected in the marine ecosystem and may exert adverse impacts on marine species. Although under realistic pollution scenarios, PAH pollution usually occurs as a mixture of different PAH compounds, the toxic impacts of PAH mixtures on marine organisms remain largely unknown to date, including their interactions with other emergent pollutants such as MPs. In this study, the single and combined toxic impacts of polystyrene MPs and a mixture of PAHs (standard mix of 16 representative PAHs) on haematic parameters were evaluated in the blood clam Tegillarca granosa. Our data demonstrated that blood clams treated with the pollutants examined led to decreased total haemocyte count (THC), changed haematic composition, and inhibited phagocytosis of haemocytes. Further analyses indicated that MPs and a mixture of PAHs may exert toxic impacts on haematic parameters by elevating the intracellular contents of reactive oxygen species (ROS), giving rise to lipid peroxidation (LPO) and DNA damage, reducing the viability of haemocytes, and disrupting important molecular signalling pathways (indicated by significantly altered expressions of key genes). In addition, compared to clams treated with a single type of pollutant, coexposure to MPs and a mixture of PAHs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect of MPs and PAHs.


Assuntos
Bivalves , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Plásticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
J Hazard Mater ; 409: 125016, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444954

RESUMO

Recently, the ubiquitous presence of microplastics (MPs) has drawn worldwide concern over its potential threat to aquatic organisms. However, the effects of MPs on the olfactory ability of fish and the subsequent odorant evoked behaviors remain elusive. In the present study, we analyzed the potential olfactory toxicity of polystyrene (PS) MPs by assessing olfactory-driven behaviors of goldfish in response to odorants. Our results showed that the olfactory-driven behavioral responses of goldfish to L-cysteine and taurocholic acid were significantly hampered by a 28-day MP exposure. Further analysis demonstrated that exposure to MPs may suppress the expression of genes encoding olfactory G protein-coupled receptors, inhibit the enzyme activities of cation transport ATPases crucial for action potential generation, alter the in vivo contents of neurotransmitters as well as metabolites involved in the transduction of electrical signals, and cause olfactory bulb injury and neurotoxicity closely related to the processing of electrical signals. In conclusion, the results obtained in the present study suggest that MPs at environmentally relevant concentrations could impair the olfactory-mediated behavioral responses of goldfish, probably through hampering odorant identification, action potential generation, olfactory neural signal transduction, and olfactory information processing.


Assuntos
Carpa Dourada , Microplásticos , Animais , Odorantes , Plásticos , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...