Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 69: 102268, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35921796

RESUMO

The circadian clock generates rhythms in biological processes including plant development and metabolism. Light synchronizes the circadian clock with the day and night cycle and also triggers developmental transitions such as germination, or flowering. The circadian and light signaling pathways are closely interconnected and understanding their mechanisms of action and regulation requires the integration of both pathways in their complexity. Here, we provide a glimpse into how chromatin remodeling lies at the interface of the circadian and light signaling regulation. We focus on histone acetylation/deacetylation and the generation of permissive or repressive states for transcription. Several chromatin remodelers intervene in both pathways, suggesting that interaction with specific transcription factors might specify the proper timing or light-dependent responses. Deciphering the repertoire of chromatin remodelers and their interacting transcription factors will provide a view on the circadian and light-dependent epigenetic landscape amenable for mechanistic studies and timely regulation of transcription in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Epigenoma , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
2.
Plant Commun ; 1(3): 100040, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367237

RESUMO

Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo
3.
Physiol Plant ; 170(3): 345-356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32588443

RESUMO

Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3 , GA7 , indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.


Assuntos
Arabidopsis , Giberelinas , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Hipocótilo , Ácidos Indolacéticos , Luz , Glycine max/genética , Temperatura
4.
J Exp Bot ; 71(6): 2072-2084, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31925954

RESUMO

The effect of shading during seed development on subsequent germination remains largely unknown. In this study, two soybean (Glycine max) seed production systems, monocropping (MC) and maize-soybean intercropping (IC), were employed to examine the effects of shading of the mother plant on subsequent seed germination. Compared to the MC soybean seeds, which received light, the developing IC seeds were exposed to shade resulting from the taller neighboring maize plants. The IC seeds germinated faster than the MC seeds, although there was no significant difference in the thickness of the seed coat. The concentration of soluble pro-anthocyanidin in the IC seed coat was significantly lower than that in the MC seed coat. Changes in the concentrations of several types of fatty acids in IC seeds were also observed, the nature of which were consistent with the effect on germination. The expression levels of genes involved in abscisic acid (ABA) biosynthesis were down-regulated in IC seeds, while the transcription levels of the genes related to gibberellin (GA) biosynthesis were up-regulated. This was consistently reflected in decreased ABA concentrations and increased active GA4 concentrations in IC seeds, resulting in an increased GA4/ABA ratio. Our results thus indicated that shading of the mother plant during seed development in soybean promoted subsequent germination by mediating the biosynthesis of pro-anthocyanidins, fatty acids, and phytohormones.


Assuntos
Germinação , Sementes , Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Giberelinas , Glycine max/genética
5.
Plant Physiol Biochem ; 148: 228-236, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31981875

RESUMO

Global climate change is strongly associated with variations in precipitation and flooding events. Flooding usually causes submergence- or partial submergence stress in plants, which significantly has a negative influence on agricultural production, from seed germination to vegetative and reproductive growth. Flooding stress results in crop growth under low oxygen conditions and thus, negatively affects the developmental periods of plant lifecycle. The survival strategies of different plant species under this stressful condition are distinct, whereas the perception pathways associated with flooding stress are similar at the molecular level. Plants respond to flooding stress by mediating changes in their architecture, energy metabolism, photosynthesis, respiration and endogenous phytohormone biosynthesis/signaling, because aerobic respiration is inhibited under flooding stress, the decrease of energy metabolism further constrains plant development. Consequently, to acclimate under these unfavorable conditions, the anaerobic respiration cascade must be promoted. In this updated review, we primarily focus on recent advances in our understanding of the mechanisms underlying plant responses to flooding stress. We summarize the functions of the flooding response factors involved in energy metabolism and phytohormone biosynthesis/signaling cascades. Finally, the current understanding of how plants circumvent flooding stress, and the potential challenges for future research, are discussed.


Assuntos
Inundações , Germinação , Fenômenos Fisiológicos Vegetais , Sementes , Estresse Fisiológico , Germinação/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento
6.
Plant Cell Environ ; 43(2): 293-302, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675441

RESUMO

Both seed germination and early seedling establishment are important biological processes in a plant's lifecycle. Seed longevity is a key trait in agriculture, which directly influences seed germination and ultimately determines crop productivity and hence food security. Numerous studies have demonstrated that seed deterioration is regulated by complex interactions between diverse endogenous genetically controlled factors and exogenous environmental cues, including temperature, relative humidity, and oxygen partial pressure during seed storage. The endogenous factors, including the chlorophyll concentration, the structure of the seed coat, the balance of phytohormones, the concentration of reactive oxygen species, the integrity of nucleic acids and proteins and their associated repair systems, are also involved in the control of seed longevity. A precise understanding of the regulatory mechanisms underlying seed longevity is becoming a hot topic in plant molecular biology. In this review, we describe recent research into the regulation of seed longevity and the interactions between the various environmental and genetic factors. Based on this, the current state-of-play regarding seed longevity regulatory networks will be presented, particularly with respect to agricultural seed storage, and the research challenges to be faced in the future will be discussed.


Assuntos
Meio Ambiente , Sementes/genética , Sementes/fisiologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Germinação/fisiologia , Longevidade , Dormência de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Plântula/genética , Plântula/fisiologia
7.
BMC Plant Biol ; 19(1): 269, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226949

RESUMO

BACKGROUND: The Growth-regulating factor (GRF) family encodes plant-specific transcription factors which contain two conserved domains, QLQ and WRC. Members of this family play vital roles in plant development and stress response processes. Although GRFs have been identified in various plant species, we still know little about the GRF family in soybean (Glycine max). RESULTS: In the present study, 22 GmGRFs distributed on 14 chromosomes and one scaffold were identified by searching soybean genome database and were clustered into five subgroups according to their phylogenetic relationships. GmGRFs belonging to the same subgroup shared a similar motif composition and gene structure. Synteny analysis revealed that large-scale duplications played key roles in the expansion of the GmGRF family. Tissue-specific expression data showed that GmGRFs were strongly expressed in growing tissues, including the shoot apical meristems, developing seeds and flowers, indicating that GmGRFs play critical roles in plant growth and development. On the basis of expression analysis of GmGRFs under shade conditions, we found that all GmGRFs responded to shade stress. Most GmGRFs were down-regulated in soybean leaves after shade treatment. CONCLUSIONS: Taken together, this research systematically analyzed the characterization of the GmGRF family and its primary roles in soybean development and shade stress response. Further studies of the function of the GmGRFs in the growth, development and stress tolerance of soybean, especially under shade stress, will be valuable.


Assuntos
Glycine max/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Luz , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Estresse Fisiológico , Sintenia , Fatores de Transcrição/metabolismo , Transcriptoma
8.
J Exp Bot ; 70(1): 101-114, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982626

RESUMO

Soybean seeds contain higher concentrations of oil (triacylglycerol) and fatty acids than do cereal crop seeds, and the oxidation of these biomolecules during seed storage significantly shortens seed longevity and decreases germination ability. Here, we report that diethyl aminoethyl hexanoate (DA-6), a plant growth regulator, increases germination and seedling establishment from aged soybean seeds by increasing fatty acid metabolism and glycometabolism. Phenotypic analysis showed that DA-6 treatment markedly promoted germination and seedling establishment from naturally and artificially aged soybean seeds. Further analysis revealed that DA-6 increased the concentrations of soluble sugars during imbibition of aged soybean seeds. Consistently, the concentrations of several different fatty acids in DA-6-treated aged seeds were higher than those in untreated aged seeds. Subsequently, quantitative PCR analysis indicated that DA-6 induced the transcription of several key genes involved in the hydrolysis of triacylglycerol to sugars in aged soybean seeds. Furthermore, the activity of invertase in aged seeds, which catalyzes the hydrolysis of sucrose to form fructose and glucose, increased following DA-6 treatment. Taken together, DA-6 promotes germination and seedling establishment from aged soybean seeds by enhancing the hydrolysis of triacylglycerol and the conversion of fatty acids to sugars.


Assuntos
Caproatos/farmacologia , Ácidos Graxos/metabolismo , Germinação , Glycine max/genética , Reguladores de Crescimento de Plantas/farmacologia , Plântula/crescimento & desenvolvimento , Açúcares/metabolismo , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Sementes/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo
9.
Mol Biol Rep ; 45(6): 2727-2731, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30121823

RESUMO

Emerging evidence suggests that the stress hormone abscisic acid (ABA) is also involved in the floral transition control. The transcription factors ABA INSENSITIVE4 (ABI4) and ABI5 negatively regulate flowering by directly promoting FLOWERING LOCUS C expression, and ABI3 also negatively regulates the floral transition. However, the genetic relationships between ABI4 and both ABI5 and ABI3 remain elusive. Here, we generated transgenic plants overexpressing ABI4 in the abi5 (OE-ABI4::abi5) and abi3 backgrounds (OE-ABI4::abi3). The flowering phenotypic analysis demonstrated that OE-ABI4::abi5 and OE-ABI4::abi3 plants exhibited delayed flowering. These findings suggest that ABI4 independently regulates floral transition but not through ABI5 and ABI3 cascades.


Assuntos
Ácido Abscísico/metabolismo , Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais
10.
Front Plant Sci ; 9: 416, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636768

RESUMO

Phytohormones regulate numerous important biological processes in plant development and biotic/abiotic stress response cascades. More than 50 and 100 years have passed since the initial discoveries of the phytohormones abscisic acid (ABA) and gibberellins (GA), respectively. Over the past several decades, numerous elegant studies have demonstrated that ABA and GA antagonistically regulate many plant developmental processes, including seed maturation, seed dormancy and germination, root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as a well-established stress hormone, ABA plays a key role in plant responses to abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly, recent evidence revealed that GA are also involved in plant response to adverse environmental conditions. Consequently, the complex crosstalk networks between ABA and GA, mediated by diverse key regulators, have been extensively investigated and documented. In this updated mini-review, we summarize the most recent advances in our understanding of the antagonistically regulatory roles of ABA and GA in different stages of plant development and in various plant-environment interactions, focusing on the crosstalk between ABA and GA at the levels of phytohormone metabolism and signal transduction.

11.
New Phytol ; 217(3): 977-983, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29058311

RESUMO

The phytohormones abscisic acid (ABA) and gibberellin (GA) antagonistically mediate diverse plant developmental processes including seed dormancy and germination, root development, and flowering time control, and thus the optimal balance between ABA and GA is essential for plant growth and development. Although more than a half and one century have passed since the initial discoveries of ABA and GA, respectively, the precise mechanisms underlying ABA-GA antagonism still need further investigation. Emerging evidence indicates that two APETALA 2 (AP2)-domain-containing transcription factors (ATFs), ABI4 in Arabidopsis and OsAP2-39 in rice, play key roles in ABA and GA antagonism. These two transcription factors precisely regulate the transcription pattern of ABA and GA biosynthesis or inactivation genes, mediating ABA and GA levels. In this Viewpoint article, we try to shed light on the effects of ATFs on ABA-GA antagonism, and summarize the overlapping but distinct biological functions of these ATFs in the antagonism between ABA and GA. Finally, we strongly propose that further research is needed into the detailed roles of additional numerous ATFs in ABA and GA crosstalk, which will improve our understanding of the antagonism between these two phytohormones.


Assuntos
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Vias Biossintéticas , Modelos Biológicos , Domínios Proteicos
12.
Sci Rep ; 7(1): 12620, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974733

RESUMO

Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA1/ABA and GA4/ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA1 and GA4 levels were decreased, resulting insignificant decreases in the ratiosGA1/ABA and GA4/ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.


Assuntos
Germinação/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Sementes/crescimento & desenvolvimento , Ácido Abscísico/biossíntese , Ácido Abscísico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/genética , Giberelinas/biossíntese , Giberelinas/genética , Dormência de Plantas , Sementes/efeitos dos fármacos , Glycine max/efeitos dos fármacos
13.
Front Plant Sci ; 8: 1372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848576

RESUMO

Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

14.
Front Plant Sci ; 7: 2021, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28174573

RESUMO

Seed germination and early seedling establishment are critical stages during a plant's life cycle. These stages are precisely regulated by multiple internal factors, including phytohormones and environmental cues such as light. As a family of small molecules discovered in wildfire smoke, karrikins (KARs) play a key role in various biological processes, including seed dormancy release, germination regulation, and seedling establishment. KARs show a high similarity with strigolactone (SL) in both chemical structure and signaling transduction pathways. Current evidence shows that KARs may regulate seed germination by mediating the biosynthesis and/or signaling transduction of abscisic acid (ABA), gibberellin (GA) and auxin [indoleacetic acid (IAA)]. Interestingly, KARs regulate seed germination differently in different species. Furthermore, the promotion effect on seedling establishment implies that KARs have a great potential application in alleviating shade avoidance response, which attracts more and more attention in plant molecular biology. In these processes, KARs may have complicated interactions with phytohormones, especially with IAA. In this updated review, we summarize the current understanding of the relationship between KARs and SL in the chemical structure, signaling pathway and the regulation of plant growth and development. Further, the crosstalk between KARs and phytohormones in regulating seed germination and seedling development and that between KARs and IAA during shade responses are discussed. Finally, future challenges and research directions for the KAR research field are suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...