Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 118048, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141721

RESUMO

Antibiotic residues in lake ecosystems have been widely reported; however, the vertical distribution of antibiotics in lake sediment profiles have rarely been examined. This study systematically revealed the vertical distribution pattern, sources, and risks of antibiotics in sediments of four typical agricultural lakes in central China. Nine of 33 target antibiotics were detected with a total concentration range of 39.3-18,250.6 ng/g (dry weight), and the order of average concentration was erythromycin (1447.4 ng/g) > sulfamethoxazole (443.7 ng/g) > oxytetracycline (62.6 ng/g) > enrofloxacin (40.7 ng/g) > others (0.1-2.1 ng/g). The middle-layer sediments (9-27 cm) had significantly higher antibiotic detected number and concentration than those in the top layer (0-9 cm) and bottom layer (27-45 cm) (p < 0.05). Correlation analysis showed that significant relationships existed between antibiotic concentrations and the octanol-water partition coefficients (Kow) of antibiotics (p < 0.05). Redundancy analysis indicated that Pb, Co, Ni, water content, and organic matter (p < 0.05) jointly affected the distribution of antibiotics in sediment profiles. Risk assessment showed that the highest potential ecological and resistance selection risks of antibiotics occurred in the middle-layer sediments, and oxytetracycline, tetracycline, and enrofloxacin had the most extensive potential risks in the sediment profiles. Additionally, the positive matrix factorization model revealed that human medical wastewater (54.5%) contributed more antibiotic pollution than animal excreta (45.5%) in sediment. This work highlights the inhomogeneous distribution of antibiotics in sediment profiles and provides valuable information for the prevention and control of antibiotic contamination in lakes.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Animais , Humanos , Antibacterianos/análise , Lagos/análise , Lagos/química , Ecossistema , Oxitetraciclina/análise , Enrofloxacina/análise , Água/análise , Medição de Risco , China , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-36834371

RESUMO

Heavy metal pollution in lakes is an issue that endangers ecosystems worldwide; however, the vertical properties of heavy metals in the water columns and sediment cores of lakes have been rarely evaluated simultaneously. This study revealed the pollution, risks, and sources of heavy metals from surface water to deep sediments in four typical shallow lakes located in central China. The results showed that the concentrations of heavy metals, except Hg, had insignificant stratification in the water column. Heavy metals had three vertical profiles in sediment cores, i.e., the concentrations of As, Hg, Cd, Pb, and Mn in the surface sediment (0-9 cm) were higher than that in the bottom sediment (9-45 cm) (p < 0.05), the concentrations of Cr, Co, Fe, and Ni in the bottom sediment were higher than the surface sediment (p < 0.05), and the concentrations of Cu and Zn had no significant stratification. The Nemerow pollution index showed that heavy metal pollution dominated by Hg reached slight-moderate levels, and had higher levels in surface water than that in bottom water (p < 0.05). The Nemerow integrated risk index showed that the heavy metals had moderate-extreme potential ecological risks (Cd contributed 43.4%) in the sediments, and the ecological risk in surface sediment was significantly higher than that in bottom sediment (p < 0.01). Principal component analysis revealed that agriculture, transportation, and chemical industry were the major sources of heavy metals in water and surface sediments, while agriculture and steel-making were the primary sources in bottom sediments. This study provides valuable data and insight for the control of heavy metal pollution in lakes with high human activity loads.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Lagos/química , Ecossistema , Cádmio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco , Metais Pesados/análise , Mercúrio/análise , China , Água/análise , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...